

University full of life

CZU.CZ 07/10/25

Cryopreservation

Low cholesterol to phospholipid ratio in the plasma membrane

Intracelular ice crystals

Mitochondrial damage

Czech University of Life Sciences Prague

Cryopreservation

Affected by other factors:

Environmental factors

Nutrition

"Good or bad" freezers

Ram semen shows inter-individual variability, that affects semen storage performance and freeze-thaw process

Prediction of sperm freezability

Cryotolerance in rams is associated with the expression of aquaporin 3 (Pequeno et al., 2023)

Sperm with high cryotolerance contained specific proteins associated with:

- the regulation of calcium (Ca²⁺) transport: S100A8, S100A9, S100A12, S100A14
- or providing antioxidant protection: HYOU1, PRDX1 (Ren et al. 2023)

Western blott

Czech University of Life Sciences Prague

6

Association between conventional semen variables and sperm freezability

- Motility
- Concentration
- Volume
- Order of ejaculate sampling
- Breed

Czech University of Life Sciences Prague

Theriogenology
Volume 64, Issue 2, 15 July 2005, Pages 305-316

Animal Reproduction Science Volume 112, Issues 1–2, May 2009, Pages 150-157

Does multivariate analysis of post-thaw sperm characteristics accurately estimate in vitro fertility of boar individual ejaculates?

M.A. Gil ^a $\stackrel{\triangle}{\sim}$ $\stackrel{\boxtimes}{\bowtie}$, J. Roca ^a, T. Cremades ^a, M. Hernández ^a, J.M. Vázquez ^a, H. Rodríguez-Martínez ^{a b}, E.A. Martínez ^a

Short communication

Assessment of goat semen freezability according to the spermatozoa characteristics from fresh and frozen samples

J. Dorado a 💍 🖾 , M. Hidalgo a, A. Muñoz b, I. Rodríguez a

Original Paper

Czech Journal of Animal Science, 70, 2025

https://doi.org/10.17221/185/2024-CJAS

Association between conventional semen variables and sperm freezability in rams

Aizhan Makhanbetova¹, Filipp Georgijevič Savvulidi²*, Martin Ptáček², Lucie Langerová², Beybit Kulataev¹, Nurlan Malmakov¹

¹Meat Sheep Breeding Department, Kazakh Research Institute of Livestock and Fodder Production,

The effect of conventional variables on post-thawing total sperm motility

Simple regresion analysis:

-	GLM procedure		Significance		
	R^2	P	VOL	CONC	FRESH
	0.007	n.s.	n.s.	_	_
	0.033	等杂杂	_	物物物	_
	0.057	物物物物	_	_	特特學物
THAWED —	0.049	申申申	塘	物物物	-
	0.071	特特特特	梅	_	特特特特
	0.063	****	_	n.s.	特特
	0.074	检验物	n.s.	n.s.	等等

CONC = sperm concentration after collection (10^9 /ml); FRESH = sperm motility after collection; GLM = generalised linear models; n.s. = not significant; P-model = P-value of the statistical model; R2 = coefficient of determination; THAWED = frozen-thawed total sperm motility; VOL = semen volume after collection (ml); *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001

The effect of conventional variables on post-thawing total sperm motility

Regression analysis corrected for systematic effects:

BREED = fixed effect of breed; CONC = sperm concentration after collection ($10^9/\text{ml}$); FRESH = sperm motility after collection; GLM = generalised linear models; n.s. = not significant; ORDER = fixed effect of the order of ram semen collection; *P*-model = *P*-value of the statistical model; *R*2 = coefficient of determination; THAWED = frozen-thawed total sperm motility; VOL = semen volume after collection (ml); YEAR*SEASON = randomised combined year-seasonal effect; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001

The effect of breed and order of ejaculate sampling on post-tawing total sperm motility

Czech University of Life Sciences Prague

Summary

Semen does not need to be rejected based on motility, volume, and concentration, because these variables have very low predictive value for freezability

It would be possible to prepare 6% more doses for insemination (Nikitkina & Shapiev; 2010)

Other methods for predicting freezability should be explored

University full of life

CZU.CZ 07/10/25

Introduction

A 2 hour equilibration period improves the quality of ejaculates with low cryotolerance (Passareli et al., 2020)

Shortened equilibration time leads to decreased sperm viability

(Doležalová et al., 2016)

Aim of study

The aim of this study was to verify a defined procedure based on shortened equilibration during freezing, which could serve as a tool for predicting sperm freezability in rams of the Wallachian sheep breed.

An experimental group

A control group

15 min. equilibration

VS.

120 min. equilibration

Rams and Semen collection

14

- A total of 7 collection days (with weekly intervals)
- Method: Artificial vagina

15

Ram housing

Czech University of Life Sciences Prague

Analysis of collected semen quality and dilution 16

Organoleptically: colour, odour, density

Concentration 350 mil/ml

University full of life

CZU.CZ 07/10/25

Statistical analyses

Method: GLM (Generalized Linear Model)

Variables:

- VIA (%)
- PMD (%)
- PMAD (%)
- AD (%)
- MA (%)

$$Y_{ijk} = Ram_i + Day_i + b*x+e_{ijk}$$

Y_{ijk} = variables; Ram_i = fixed effect of the ram; Day_i = fixed effect of collection day; b*x = adjustment for equilibration time (15 min → 120 min); e_{ijk} = the residual error

Assessment of sperm kinematic characteristics 19

VARIABLE	\mathbf{R}^2	P	RAM	DAY	SHORTENED EQ
MOT	0,523	***	**	***	**
PROGR	0,356	**	*	n.s.	*
VAP	0,362	*	*	**	n.s.
VCL	0,338	**	**	n.s.	n.s.
VSL	0,371	**	n.s.	***	n.s.
LIN	0,261	*	n.s.	*	n.s.
STR	0,319	**	n.s.	*	n.s.

MOT = total motility (%); PROGR = progressive motility (%); VAP = average path velocity (μ m/s); VCL = curvilinear velocity (μ m/s); VSL = straight line velocity (μ m/s); LIN = linearity (%); STR = straightness (%); R²= coefficient of determination; P- value = P - value of the statistical model; SHORTENED EQ = Shortened equilibration - for the given parameter as a covariate; DAY = collection day; n.s. = not significant; *P < 0.05; **P < 0.01; ***P < 0.001

Predictive model for assessing total motility after thawing

Linear regression correlation of MOT 15 and MOT 120

MOT15 (%) = % total motility after freezing with a 15 minute equilibration; MOT120 (%) = % total motility after freezing with a 120 minute equilibration

Predictive model for assessing progressive motilty after thawing

Linear regression correlation of PROGR 15 and PROGR 120

PROGR15 (%) = % progressive motility after freezing with a 15 minute equilibration; PROGR120 (%) = % progressive motility after freezing with a 120 minute equilibration

Assessment of sperm viability and membrane integrity indicators

VARIABLE	\mathbf{R}^2	P	RAM	DAY	SHORTENED EQ
VIA	0,775	***	n.s.	***	***
PMD	0,617	***	*	**	***
PMAD	0,695	***	***	***	*
AD	0,769	***	n.s.	***	***
MA	0,724	***	n.s.	*	***

VIA = sperm viability (%); PMD = plasma membrane damage (%); PMAD = plasma membrane and acrosome damage (%); AD = acrosome damage (%); MA = mitochondrial activity (%); R = coefficient of deterioration; P-value = P – value of the statistical model; SHORTENED EQ = Shortened equilibration – for the given parameter as a covariate; DAY = collection day; n.s. = not significant; *P<0,05; **P<0,01; ***P<0,001

Predictive model for assessing sperm viability after thawing

Linear regression correlation of VIA 15 and VIA 120

VIA15 (%) = % viable sperm after freezing with a 15 minute equilibration; VIA 120 (%) = % viable sperm after freezing with a 120 minute equilibration

Predictive model for assessing mitochondrial activity after thawing

Linear regression correlation of MA 15 and MA 120

MA15 (%) = % mitochondrial damage after freezing with a 15 minute equilibration; MA120 (%) = % mitochondrial damage after freezing with a 120 minute equilibration

Conclusion

The prediction of sperm freezability in rams based on shortened equilibration time represents an effective tool

A significant predictive potential of sperm parameters after 120 minute equilibration based on the assessment at 15 minute equilibration was observed primarily in indicators evaluated by flow cytometry

Further research should focus on:

- Increasing the sample size
- Different sheep breeds
- Other livestock species (on goats)

Czech University of Life Sciences Prague

Thank you for your attention!

Lucie Langerová, Martin Ptáček, Filipp Georgievič Savvulidi

I would like to thank:

Aizhan Makhanbetova,
Beybit Kulataev,
Nurlan Malmakov and the other
members of the Kazakh team

AND

Barbora Kalousová and the other members of the Czech team for their cooperation!

