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PŘEDMLUVA 

 

Vážení studenti, 

předkládané studijní materiály jsou určeny právě Vám, posluchačům předmětu  

Statistika I bakalářského oboru Podnikání a administrativa na Provozně ekonomické fakultě 

ČZU v Praze. Cílem těchto skript je poskytnout Vám ucelený a přehledný souhrn teorie 

pravděpodobnosti a matematické statistiky, které tvoří základ pro jakoukoliv efektivní analýzu 

dat.  

Celý text je koncipován tak, aby Vás podpořil v procesu studia – pomohl Vám lépe pochopit 

a prohloubit znalosti získané na přednáškách a seminářích a sloužil jako efektivní pomůcka pro 

přípravu na zkoušku. Je však důležité si uvědomit, že při své přípravě musíte věnovat pozornost 

nejen zde uvedeným tématům, ale současně též intenzivně pracovat formou samostudia  

z dalších doporučených zdrojů. Právě tímto komplexním přístupem budete rozvíjet své 

analytické schopnosti při práci s daty. 

Materiály jsou přehledně rozděleny do tematických okruhů. V každém z nich se nejprve 

seznámíte se základní teorií a následně si osvojené principy prohloubíte prostřednictvím 

řešených příkladů. Skripta navíc obsahují i úvod do práce se statistickým softwarem IBM SPSS 

Statistics. 

Na konci každého celku na Vás čekají příklady pro samostatnou práci, které Vám umožní 

ověřit a upevnit si nabyté dovednosti. Datové matice k řešeným i neřešeným příkladům jsou 

dostupné na platformě Moodle v rámci kurzu, případně je lze získat e-mailem na adrese 

jindrova@pef.czu.cz. 

Přeji Vám mnoho studijních úspěchů a radosti z objevování světa statistiky. 

 

Andrea Jindrová 
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1 ÚVOD 

Historie statistiky sahá do nejstarších dějin lidstva. Prvními velkými doloženými statistickými    

událostmi ve starověku bylo sčítání lidu ve 3. tisíciletí př. n. l. v Egyptě a Číně.  Nejstarší 

statistikou je „popis státu“, státověda, státovědná statistika, v dnešní době nazývána popisná 

statistika.  

V roce 1562 v tehdy hospodářsky vyspělých Benátkách vyšlo jedno z prvních státovědných 

děl Francesca Sansovina „O vládě a správě v různých královstvích“. Jeho základem byl popis 

území státu, utváření terénu, přírodního bohatství, počtu a struktury obyvatelstva, rozvoje 

výrobních a dalších odvětví, armády, organizace správy, soudů, škol a podobně. V této době se 

kromě popisu jen výjimečně objevovala číselná charakteristika, protože číselná data  

o sledovaných jevech většinou neexistovala.  

S rychlým rozvojem hospodářství ke konci období feudalismu začala statistika získávat 

stále více číselných údajů. V 18. století pak statistici tato data začali systematicky řadit do 

tabulek a vzájemně je srovnávat. 

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Jevy, 

které můžeme opakovaně pozorovat, zkoumá popisná statistika. V reálném světě se však 

objevují i jevy, jejichž přesný výsledek není možno určit. Matematickou interpretací takovýchto 

jevů se zabývá matematická statistika, která vychází ze základů teorie pravděpodobnosti. 

Teorie pravděpodobnosti je matematická disciplína, která vznikla v polovině 17. století. 

Podnětem pro její vznik byly úvahy o hazardních hrách (hod kostkou, karetní hry). Teorie 

pravděpodobnosti se zabývá popisem chování náhodných veličin na základě teoretických 

informací (a priori) o povaze daného experimentu (náhodného pokusu). Je to vědní obor, 

jehož logická struktura je budována axiomaticky. To znamená, že její základ je tvořen několika 

tvrzeními (tzv. axiomy), které vyjadřují základní vlastnosti axiomatizované veličiny a všechna 

další tvrzení jsou z nich odvozena deduktivně. Takto vytvořená abstraktní teorie již nemusí 

pracovat s konečnými množinami prvků. Obecně platí, že správnost axiomů je ověřena 

zkušeností, která se v rámci dané teorie nedokazuje. 

Matematická statistika vychází z principu popisné statistiky a počtu pravděpodobnosti. 

Jedná se o vědní obor, který zkoumá charakter procesů vzniku hromadných dat, které jsou 

výsledkem náhodného pokusu. Opakování náhodného pokusu vede k nahodilosti výsledků  

a z toho vyplývá, že všechny závěry matematické statistiky mají náhodný charakter. Vychází 

z popisu veličin (a posteriori) na základě měření či empirického (skutečného) poznání, 
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které můžeme číselně změřit.  Z výše uvedeného vyplývá, že matematická statistika a teorie 

pravděpodobnosti jsou úzce propojené, ale mají odlišné zaměření. 

Popisná statistika (deskriptivní statistika) se zabývá elementárními metodami popisu stavu 

anebo vývoje hromadných jevů. Cílem popisné statistiky je popsat chování hromadných jevů 

a zkoumané poznatky o těchto jevech kvantifikovat. Číselné charakteristiky jevů mohou být 

předmětem statistického zkoumání anebo mohou být základem pro aplikaci složitějších 

statistických analýz. 

Rozvoj informačních technologií v polovině 20. století dal možnost vzniknout „nové 

statistice“. Statistice, která je založena na analytickém úsudku a statistické inferenci (indukci), 

neboli zobecňování úsudků o vlastnostech celku (populace) na základě výběru a dílčích šetření. 

Počítače umožnily provádět rozsáhlé početní operace a daly možnost vzniku výpočetně 

náročným statistickým metodám. Další velký posun v této oblasti byl zaznamenám s rozšířením 

programového vybavení. Statistické programy umožňují i „neznalým matematikům“ aplikovat 

složité statistické metody na datech jim blízkých.          

1.1 Základní pojmy 

Statistika umožňuje rozvíjet lidské znalosti na základě zjišťování, zpracování, analýzy  

a prezentace jevů, které jsou výsledkem působení mnoha náhodných i nenáhodných vlivů. 

Statistiku je možné chápat jako konkrétní hodnotu (především číselnou, ale i slovní), která 

nám poskytuje informaci o sledovaných jevech (průměr, četnost) nebo jako činnost, která je 

založena na zjišťování dat o hromadných jevech (statistická evidence, výkazy, ročenky)  

a v neposlední řadě, jako vědní disciplínu, která zkoumá zákonitosti chování náhodných jevů  

a slouží k hlubší analýze chování těchto jevů (třídění, analýza dat, prezentace závěrů). 

Jev je výsledkem experimentu, pozorování či jiné činnosti. Číselné či slovně popsaný jev 

však není dostatečným zdrojem informací k vyslovení závěru. Ve statistice pracujeme 

především s jevy, které se vyskytují za určitých podmínek opakovaně – tzv. hromadnými jevy.  

Hromadné jevy můžeme definovat v souboru věcí, osob, událostí ve formě kvantitativní 

(číselné) anebo formě kvalitativní (slovní), kterou je možné převést na číslo. 

Hromadné jevy mohou být povahy deterministické (jevy, jejichž výsledek je přesně určen 

předchozími podmínkami) anebo jevy náhodné (stochastické).  

Náhodné hromadné jevy mohou a nemusí nastat za předem stanovených podmínek. Tyto 

jevy jsou výsledkem působení velkého množství příčin a jejich vlastnosti se nemohou projevit 
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v jednotlivých jevech, ale jen v souboru jevů, a to prostřednictvím řady náhod (vznik 

náhodných jevů i přesto odpovídá určitým pravidlům a zákonitostem).  

Příklad 1.1 

Hromadné jevy z oblasti: 

věcí → počet bytů, počet bazénů, počet PC; 

osob → výška všech osob v české republice, dosažené vzdělání; 

událostí → meteorologická měření, výskyt bouřek. 

 

Zkoumání hromadných jevů je založeno na definování množiny prvků (jednotek, případů), 

které jsou nositelem celé řady vlastností → znaků (proměnných → slovně popsatelných anebo 

číselně kvantifikovatelných). Množina jednotek, která je nositelem stejných znaků, se nazývá 

statistický soubor.  

Množinu prvků (statistickou jednotku) je potřeba přesně vymezit z hlediska věcného  

(co považujeme za statistickou jednotku), prostorového (vymezení území, ze kterého budou 

statistické jednotky zahrnuty do statistického souboru) a časového (určení časového okamžiku 

nebo období, ve kterém bude statistické šetření prováděno).   

 Příklad 1.2 

 Vymezení statistické jednotky  

CO? KDY? KDE? 

byty 3+1 rok 2024 Středočeský kraj 

student VŠ školní rok 2024/2025 Karlova univerzita 

množství srážek v mm 13. 08. 2024  Stochov 

výrobní podnik první pololetí roku 2024 Jihočeský kraj 

 

Statistické jednotky (prvky) jsou nositeli statistických znaků → proměnných (ukazatelů).  

Zpracování dat a výběr konkrétních statistických metod se vždy odvíjí od jejich 

charakteru. Klasifikaci proměnných je možné provádět podle různých hledisek. Nejčastěji 

využívané je dělení na kvantitativní a kvalitativní proměnné (obr. 1.1). Je-li sledovaná vlastnost 

prvku číselně měřitelná, označujeme příslušnou statistickou proměnnou jako kvantitativní 

(kardinální), v opačném případě, kdy jsou jednotlivé obměny sledované vlastnosti popsány 

pouze slovně, hovoříme o proměnné kvalitativní. 

Kvantitativní proměnné jsou číselně měřitelné údaje, u kterých můžeme přesně říct,  

o kolik je jedna hodnota vyšší než druhá (věk, hmotnost, počet osob, strojů atd). Jsou to takové 
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hodnoty, které vyjadřují skutečné množství sledovaných vlastností statistických jednotek  

(v žádném případě, se nejedná o číselné kódy, které přiřazujeme proměnným kvalitativním při 

převodu údajů do datové matice). Kvantitativní proměnné rozdělujeme na poměrové  

a intervalové. U poměrových (podílových) proměnných můžeme vyjádřit rozdíl a podíl dvou 

hodnot. Poměrová proměnná může nabývat pouze kladných číselných hodnot (např. Karel má 

50 let, Jana 25 let → rozdíl 25 let; Karel je dvakrát starší než Jana). U tohoto typu proměnné 

hovoříme o existenci přirozené nuly tzv. „smysluplné nuly“ (např. cílem statistického sledování 

je váha notebooku v případě, že notebook nic neváží, tak neexistuje). V případě intervalové 

proměnné můžeme číselně vyjádřit pouze velikost rozdílu mezi libovolnými dvěma hodnotami 

znaku (rozdíl teplot v místnostech, teplota vzduchu měřená v celých číslech). Intervalové 

proměnné mají nulu na stupnici určenou konvencí (dohodou), tzn. že nemají nulovou hodnotu 

ve smyslu neexistence dané vlastnosti.  Kvantitativní proměnné rozdělujeme také na proměnné 

diskrétní, které nabývají celočíselných hodnot (počet studentů, počet domů) a spojité, které 

nabývají libovolných hodnot z určitého intervalu (výška, cena, příjem). 

Obrázek 1.1: Základní rozdělení proměnných podle jejich charakteru 

 

 

 

 

 

 

Kvalitativní proměnné jsou slovně vyjádřitelné vlastnosti a dělíme je podle možnosti 

uspořádání na nominální a ordinální.   O hodnotách nominálních   proměnných můžeme 

pouze říct, zda jsou stejné či různé. Kvantifikace těchto proměnných je možná na základě 

četnosti výskytu sledovaného znaku (škola, fakulta). U ordinálních (pořadových) 

proměnných, můžeme určit pořadí sledovaných znaků. Hodnoty proměnných se vyjadřují 

vzestupně nebo sestupně podle úrovně zkoumané vlastnosti (úroveň spokojenosti, vzdělání). 

Hodnoty nominální proměnné mohou být označeny čísly (zakódovány), ale nelze  

u nich provádět stejné statistické analýzy jako s proměnnými kvantitativními. U ordinálních 

proměnných závisí možnost provádění statistických analýz na předpokladu stejné vzdálenosti 

mezi kategoriemi. 
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  Příklad 1.3 

  Vymezení statistické proměnné 

Proměnná Znak typ podtyp 

cena výrobku 0 neexistence, 1, ……. kvantitativní poměrová; spojitá 

počet sourozenců 0 neexistence, 1, ……. kvantitativní poměrová; diskrétní 

teplota „- ∞ do +∞“ kvantitativní intervalová; spojitá 

dny v roce den kvantitativní intervalová; diskrétní 

barva očí modrá, zelená, hnědá,  ….. kvalitativní nominální; množná 

kouření ano, ne kvalitativní nominální; alternativní 

vzdělání základní, středoškolské, … kvalitativní ordinální; množná 

 

Podle počtu kategorií je dělíme na alternativní a množné. Alternativní (dichotomické) 

proměnné nabývají pouze dvou obměn sledované vlastnosti (kuřák a nekuřák). Množné 

proměnné nabývají více než dvou obměn sledované vlastnosti (obor studia, barva). 

Uvedené způsoby klasifikace proměnných dle vlastností statistického znaku, jehož jsou 

nositelem, se v odborné literatuře a programových systémech mohou lišit. Často se setkáváme 

také s pojmem kategoriální proměnné. Obměny těchto proměnných nazýváme kategoriemi. 

Řadíme zde nejen kvantitativní proměnné, ale také proměnné, které mohou vzniknout 

odvozením z proměnné kvantitativní v případě, že ji rozdělíme do intervalů.  

Proměnné můžeme vzájemně transformovat, např. hodnota BMI (Body Mass Index). 

Výpočtový vztah vychází ze srovnání dvou kvantitativních proměnných váhy a výška.  

Výsledná hodnota je tvořena jedním číslem, které můžeme následně roztřídit do kategorií. 

Volba kategorizace a tím i změna typu proměnné je založena na individuálním přístupu 

analytika, např: neobézní, obézní → proměnná nominální/alternativní; podváha <18,5; ideální 

váha 18,5–25; nadváha 25,1–30; obezita >30,1 → proměnná ordinální/množná.  

Obrázek 1.2: Klasifikace proměnných v IBM SPSS 
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Data (hodnoty sledované proměnné) můžeme získat přímo (např. měřením, vážením, 

počítáním) → primární data, anebo nepřímo (např. dělením, sčítáním, násobením) → 

sekundární data. 

  Příklad 1.4 

     Vymezení statistické proměnné 

Proměnná Statistická data 

věk primární 

počet zaměstnanců primární 

BMI sekundární 

produktivita práce sekundární 

 

Rozdělení proměnných podle číselných hodnot nebo počtu vlastností, jejichž jsou 

nositelem, je vhodné ještě doplnit o rozdělení proměnných na nezávislé a závislé.  

Nezávislé proměnné jsou takové hodnoty znaků, které ovlivňují hodnoty závislých 

proměnných (váha člověka závisí na jeho výšce; počet bodů z písemného testu je ovlivněn 

dobou přípravy na test).   

Údaje o číselných nebo slovních hodnotách jednoho nebo více znaků ve statistickém 

souboru se nazývají statistická data. 

Definování statistických jednotek a jejich znaků je důležitým krokem při sestavování 

statistických souborů. 

Obrázek 1.3: Grafické znázornění statistického souboru 

 
 

Statistický soubor může být základní nebo výběrový (Obr. 1.3). Definování základního  

a výběrového souboru se odvíjí od cílů statistického zkoumání a musí být rovněž jednoznačně 

věcně, prostorově a časově vymezené. 
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Základní soubor (populace) je množina všech prvků (jednotek), na kterých je prováděno 

statistické zkoumání. Počet prvků → rozsah základního souboru značíme 𝑵.  

V některých případech je statistické zkoumání na celé populaci nezastupitelné (výkaznictví, 

sčítání lidu, počty zvířat atd.). Rozsah základního souboru může být konečný – počet členů  

𝑵 je u takové populace přesně stanovitelný (počet strojů ve výrobním závodě, počet studentů 

daného ročníku atd.) anebo „nekonečný“ – počet členů 𝑵 je proměnlivý, nelze ho přesně zjistit 

(počet studentů vysokých škol v celé Evropě, počet jehličnatých stromů v kraji atd.).  

V případě, že rozsah základního souboru je konečný a „rozumně velký“ můžeme, provádět 

úplné zjišťování o vlastnostech všech jeho jednotek. Zpracování a rozbor takto získaných údajů 

je pak přímo založen na metodách deskriptivní statistiky a poskytuje nám přesný obraz 

sledovaného chování celé populace.  

Rozsah základního souboru je však často opravdu velký anebo nekonečný, proto není 

možné zjistit sledované vlastnosti u všech prvků. Vzhledem k tomu provádíme výběr určitého 

počtu prvků. V takovém případě pak hovoříme o výběrovém souboru. Výběrový soubor je 

podmnožinou souboru základního a počet jeho jednotek značíme 𝒏. Vybrané jednotky souboru 

mohou být vybrány náhodně (náhodný výběr) anebo podle určitých pravidel (záměrný výběr). 

Obecně by měly vybrané jednotky vždy obsahovat podstatné a charakteristické rysy základního 

souboru a být jeho reprezentativním zástupcem → reprezentativním výběrem. 

  Tabulka 1.1: Výhody a nevýhody statistického zjišťování podle typu souboru 

 Výhody Nevýhody 

Základní 

soubor 

Poskytuje přesné výsledky o všech  

vlastnostech sledovaných 

jednotek. 

Velké finanční náklady a pracnost. 

Nespolehlivost zjišťovaných dat.   

Těžko proveditelná kontrola správnosti 

údajů. 

Výběrový 

soubor 

Zjišťování je rychlejší. 

Vyžaduje nižší náklady. 

Umožňuje pouze odhady o průběhu 

sledovaných jevů v základním souboru. 

Údaje nebo charakteristiky na jejich 

základě vypočtené jsou zatíženy chybou. 

 

Na základě informací o výběrových statistických jednotkách a hodnotách jejich znaků 

(datech), usuzujeme na vlastnosti celé populace (viz kapitola Statistická indukce). 

Zjišťujeme-li u každé jednotky statistického souboru hodnoty jedné proměnné (znaku), 

hovoříme o jednorozměrném statistickém souboru. Zjišťujeme-li u každé jednotky 

statistického souboru hodnoty dvou či více proměnných, hovoříme o dvourozměrném, 

respektive vícerozměrném statistickém souboru. V případě, že hodnoty proměnné pro 
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jednotlivé prvky souboru (statistická data) uspořádáme do datové matice, získáme datový 

soubor. 

Příklad 1.5  

Základní soubor představuje počet všech studentů nejmenované vysoké školy, jehož rozsah 

je 𝑁 = 12 534. Výběrových souborů může být celá řada, vždy záleží na cíli statistického 

šetření. V našem případě se může jednat například o studenty Ekonomické fakulty  

𝑛 = 8 255; studenty oboru Provoz a ekonomika 𝑛 = 1 053. Z uvedených výběrových souborů 

se dají vytvořit další výběrové soubory s ještě menším rozsahem a vymezením.  

 

Při pořizování statistických dat je vždy důležité zaměřit se na to, aby data obsahovala 

potřebné informace o zkoumané problematice. Předmětem zkoumání jsou statistické proměnné, 

které mohou být povahy kvantitativní nebo kvalitativní. Proměnné jsou zkoumány  

u statistických jednotek, kterými jsou například regiony, obce, podniky či osoby.  Z uvedeného 

vyplývá, že ve statistice pracujeme s různými datovými strukturami.  

Příklad 1.6  

Datový soubor je tvořen čtyřmi jednotkami a pěti proměnnými (ukazateli). 

Jednotka /proměnná Pohlaví Věk Výška Sourozenci Počet sourozenců 

student Karel muž 25 185 ano 2 

studentka Jana žena 23 162 ano 1 

student Tomáš muž 27 175 ne 0 

student Petr muž 22 180 ano 4 

 

V datovém souboru jsou data uspořádána tak, že ve sloupcích jsou zaznamenány 

analyzované ukazatele – např. věk, pohlaví. Každý řádek tabulky (matice) se týká jedné 

statistické jednotky – např. student. 

Příprava datové matice spočívá především v převedení různých formátů dat do formátu, 

který potřebujeme pro zpracování ve vybraném statistickém programu. Vybavení datové matice 

zahrnuje kódování ukazatelů, jejich popis i zařazení dle typu znaků, jejichž jsou nositeli. 

Hodnoty ukazatelů musí být srovnatelné mezi jednotkami v prostorovém a časovém srovnání. 

Statistické zjišťování, organizace dat a jejich přenos do datového souboru s sebou přináší 

různé druhy chyb, kterými mohou být data zatížena.  Proto je vždy nutné před samotným 

zpracováním provést  formální kontrolu správnosti získaných údajů (převody jednotek, 
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matematické úpravy vstupních hodnot) a logické posouzení charakteru dat vzhledem k cílům 

daného šetření.  

Jedná se například o chyby při zpracování, kterým je  možné předejít pomocí zvýšené 

pečlivosti při záznamu dat, ruční či počítačovou kontrolou nebo duplicitním způsobem převodu 

dat do datové matice. Dále se jedná o chyby metodické, jichž je možné se dopustit zvolením 

nesprávného postupu zpracování dat. V neposlední řadě se může jednat o chyby výběrové, 

kterých se dopouštíme v případě zobecnění výsledků získaných pomocí výběrového souboru 

na soubor základní. Výběrová chyba se skládá z chyby systematické a pravděpodobnostní (viz 

kapitola Teorie odhadu). 

Proces odstraňování chyb se nazývá čištění dat a úzce souvisí i s ověřováním kvality 

sledovaných jevů. Odstraňování chyb spočívá v rozpoznání nepřesných, nekompletních nebo 

nesmyslných údajů a jejich úpravě. Je zaměřeno na odhalování extrémních (odlehlých)  

či vybočujících pozorování, které mohou výrazně ovlivnit výsledky některých analýz. Nalezení 

odlehlých či vybočujících pozorování se v jednorozměrné analýze dat opírá zejména  

o grafickou analýzu (viz kapitola Průzkumová analýza datových souborů). Před samotným 

zpracování dat je důležité zaměřit se také na chybějící hodnoty, které jsou obsaženy téměř 

v každém datovém souboru.  

Jednou z možností, která by měla být výjimečná, avšak bývá často používaná, je vymazání 

záznamů s chybějícími hodnotami. Tento krok by se měl provádět pouze v situacích, kdy 

chybějící údaje neovlivní výsledky zpracování,  nebo v případě většího počtu chybějících 

hodnot u jednoho případu. 

Mnohem vhodnější jsou metody imputace, neboli doplnění chybějících hodnot. Cílem 

imputačních metod je nahrazení chybějící hodnoty odhadem, který se provádí na základě 

známých hodnot pomocí různých algoritmů od nejjednodušších, které spočívají v prostém 

nahrazení chybějící hodnoty aritmetickým průměrem nebo mediánem, až po metody, které 

berou v úvahu vztahy mezi proměnnými napříč datovým souborem.  Tyto metody jsou vhodné 

především pro kvantitativní proměnné. Pro práci s kvalitativními daty jsou vhodné metody 

deduktivní neboli subjektivní metody imputace, které vycházejí z pravidel založených  

na odvození logických vztahů mezi jednotlivými proměnnými.   

POZOR! Kvalita dat a kontrola datového souboru je klíčovým předpokladem a nezbytnou 

podmínkou pro úspěšnou aplikaci vybraných statistických metod. 
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V neposlední řadě je žádoucí vstupní data vhodně popsat a zakódovat, neboli přidělit každé 

variantě znaku číselný kód, který bude použit při zpracování. Kódování může vycházet nejen 

z typu proměnných, ale i z požadavků zvoleného počítačového programu.  

Pro zpracování datového souboru je možné využít různé typy statistických programů. 

Jednoduché procedury lze provádět již pomocí tabulkového procesoru (např. Microsoft Excel), 

ke složitějším analýzám je vhodné využít některý ze specializovaných statistických systémů 

(např. SPSS, SAS, STATISTICA), které představují komplexní nástroje pro zpracování 

rozsáhlých datových souborů. Programové systémy umožňují nejen komplexní statistickou 

analýzu dat, ale také následnou prezentaci výstupů ve formě tabulek a grafů.  
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Shrnutí kapitoly 

Popisná statistika je popis dat, co „vidíme“. Popisná statistika se zabývá vyhodnocením  

a prezentací dat. Jejím cílem je popsat chování hromadných jevů a získané poznatky 

kvantifikovat. Používá k tomu především číselné charakteristiky a grafické metody. Netýká se 

primárně náhodných veličin, nýbrž konkrétních naměřených dat.  

Teorie pravděpodobnosti je matematická disciplína, která se zabývá popisem chování 

náhodných jevů a veličin na základě teoretických informací.  

Matematická statistika se zabývá zobecňování a vyvozování závěrů z dat o celé populaci,  

s využitím nástrojů teorie pravděpodobnosti, která poskytuje teoretický základ pro práci  

s náhodnými jevy.  

Zkoumání hromadných jevů je založeno na definování množiny jednotek stejného druhu 

(srovnatelnost věcná, prostorová, časová) → předmět zkoumání je statistická jednotka. 

Statistické jednotky jsou nositelem celé řady vlastností (znaků, proměnných).  

Množina jednotek, která je nositelem stejných proměnných, se nazývá statistický soubor.   

Základní soubor (populace) je množina všech statistických jednotek. 

Výběrový soubor je podmnožinou základního souboru a je tvořen jednotkami, které 

byly ze základního souboru vybrány podle určitých předem zvolených hledisek.   

Základní rozdělení proměnných je na kvantitativní a kvalitativní. Správná klasifikace 

proměnných je velice důležitá, neboť od typu proměnné se odvíjí následné postupy statistických 

analýz.  

Při přenosu hodnot sledovaných proměnných do souboru může dojít k chybám při 

zpracování dat, nebo k metodickým a výběrovým chybám. Vstupní data a jejich prvotní 

kontrola je klíčovým parametrem, který určuje kvalitu prováděných analýz a následných 

výstupů. 
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1 Kontrolní otázky 

1. Co je statistika a jak ji lze chápat?  

2. Co jsou to hromadné jevy a jak se dělí? Uveďte příklady.  

3. Vysvětlete pojem statistická jednotka. 

4. Co je to statistický soubor a jaké jsou jeho hlavní typy?  

5. Jaký je rozdíl mezi základním a výběrovým souborem?  

6. Popište výhody a nevýhody úplného zjišťování (základního souboru) a výběrového 

zjišťování (výběrového souboru).  

7. Co jsou to statistické znaky (proměnné, ukazatele) a jak se dělí?  

8. Jaký je rozdíl mezi kvantitativními a kvalitativními proměnnými? Uveďte příklady.  

9. Jak se dále dělí kvantitativní proměnné? Popište poměrové a intervalové proměnné.  

10. Jaký je rozdíl mezi diskrétními a spojitými proměnnými? Uveďte příklady.  

11. Jak se dále dělí kvalitativní proměnné?  

12. Uveďte příklady nominálních, ordinálních, alternativních a množných proměnných.  

13. Co jsou to závislé a nezávislé proměnné? Uveďte příklad.  

14. Co jsou statistická data a jak se dělí podle způsobu získání?  

15. Co je to datová matice a jak jsou v ní data uspořádána?  

16. Jaké typy chyb mohou zatížit statistická data a jak se jim předchází?  

17. Co je čištění dat a na co se zaměřuje?  

18. Jaké jsou možnosti řešení chybějících hodnot v datovém souboru? Kdy je vhodné 

záznamy s chybějícími hodnotami vymazat a kdy se používají metody imputace?  

19. K čemu slouží kódování ukazatelů?  
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1 Příklady k procvičení 

Marketingová agentura provádí průzkum, jehož cílem je zjistit, jak spotřebitelé v České 

republice vnímají a uplatňují principy udržitelnosti při svých nákupech. Pro zjednodušení 

cvičení máte k dispozici následující data od 12 respondentů. 

Věk Vzdělání Měsíční 

příjem 

(Kč) 

Nakupuje 

ekologické 

produkty 

Jste ochoten 

zaplatit více za 

udržitelné 

produkty 

Informační 

zdroj o 

udržitelnosti 

Počet 

recyklovaných 

druhů odpadu 

35 VŠ 45000 často Ano Sociální sítě 4 

22 SŠ 28000 někdy Ne Online zprávy 2 

58 VŠ 55000 často Ano TV/rozhlas 5 

41 SŠ 32000 někdy Ano Přátelé/rodina 3 

29 VŠ 40000 často Ano Online zprávy 4 

67 ZŠ 20000 nikdy Ne Žádný 1 

38 VŠ 48000 často Ano Sociální sítě 4 

25 SŠ 30000 někdy Ne Online zprávy 2 

50 VŠ 60000 často Ano TV/rozhlas 5 

33 SŠ 31000 někdy Ano Přátelé/rodina 3 

46 VŠ 50000 často Ano Online zprávy 4 

70 ZŠ 22000 nikdy Ne Žádný 1 

 

1.1  Vymezení statistické jednotky a souborů: 

a) Definujte statistickou jednotku v tomto průzkumu. 

b) Jak byste vymezili základní soubor a výběrový soubor pro tento průzkum? 

c) Jaký je rozsah výběrového souboru v tomto konkrétním případě? 

 

1.2 Klasifikace proměnných. Pro každou proměnnou v tabulce určete její typ a podtyp podle 

klasifikace proměnných. Zdůvodněte své rozhodnutí. 

a) Věk. 

b) Vzdělání (ZŠ, SŠ, VŠ). 

c) Měsíční příjem (Kč). 

d) Nakupuje ekologické produkty (často/někdy/nikdy). 

e) Je ochoten zaplatit více za udržitelné produkty (Ano/Ne). 

 

1.3 Možné chyby a jejich kontrola: 

a) Uveďte alespoň dva typy chyb, které by mohly nastat při sběru dat v takovém 

průzkumu (např. chyby při zpracování, metodické, výběrové). 
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b) Navrhněte, jak byste provedli prvotní kontrolu dat pro proměnnou "Měsíční příjem 

(Kč)" a "Informační zdroj o udržitelnosti". 

 

1.4 Definování závislé/nezávislé proměnné: 

a) Formulujte jednu otázku, kterou by bylo možné zkoumat na základě uvedených 

údajů (např. o souvislosti mezi proměnnými). 

b) V rámci této otázky určete, která proměnná by byla závislá (vysvětlující) a která 

nezávislá (vysvětlovaná). 
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2 NÁHODNÝ JEV A PRAVDĚPODOBNOST 

Pravděpodobnost se zabývá studiem zákonitostí náhodných jevů, jejich popisem a vytvořením 

pravidel pro její výpočet. 

2.1 Náhodný jev 

Výchozím pojmem teorie pravděpodobnosti je náhodný pokus.  

Pokus je děj, činnost nebo pozorování, jehož výsledek je ovlivněn mnoha různými vlivy  

a podmínkami. Pokus je možné libovolněkrát nezávisle opakovat (teoreticky) při dodržení 

všech podmínek. Vzhledem k tomu, že některé podmínky se mohou měnit (náhoda), může 

každé opakování pokusu vést k jinému výsledku.  

Náhoda je komplex drobných příčin, které se od jednoho provedení pokusu k druhému 

pokusu mění. Je příčinou toho, že výsledky některých pokusů není možné jednoznačně určit 

vzhledem k množství a neznalosti všech podmínek (náhod), při nichž probíhá.  

Na základě výše uvedeného, definujeme pojem náhodný pokus jako pokus, jehož každé 

opakování vede k právě jednomu výsledku (hod klasickou hrací kostkou vede k právě jednomu 

ze šesti výsledků atd.), tzn., že žádné výsledky nemohou nastat současně. Množina všech 

výsledků musí být vyčerpávající, tzn., že při realizaci náhodného pokusu musí právě jeden 

výsledek z množiny výsledků nastat. 

 

Příklad 2.1 

   Základní prostor Ω hod hrací kostkou. 

Náhodný pokus Hod kostkou 𝜴 = {𝝎𝒊} 

Elementární jevy 

(jednobodová množina) 

 𝒊 = 𝟏; 𝟐; … ; 𝟔 

„padne 1“ 𝜔1 

„padne 2“ 𝜔2 

„padne 3“ 𝜔3 

„padne 4“ 𝜔4 

„padne 5“ 𝜔5 

„padne 6“ 𝜔6 

Řešení 

Základní prostor 𝛺 je vymezen množinou všech možných elementárních jevů 

 𝜔1, 𝜔2, … , 𝜔6.  𝛺 = {𝜔1, 𝜔2, … 𝜔6}. 
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Náhodný jev je výsledek náhodného pokusu. Náhodný jev může a nemusí nastat při daném 

komplexu podmínek. Jev, který nastane vždy při realizaci daných podmínek, se nazývá jev 

jistý. Jev, který nikdy nemůže nastat při realizaci daných podmínek, se nazývá jev nemožný.  

Náhodný jev nelze s jistotou předpovědět, protože některé výsledky se stávají častěji než jiné. 

Při velkém počtu opakování však vykazují náhodné jevy určité zákonitosti a pravidelnosti.  

Množinu všech možných výsledků náhodného pokusu nazýváme základní prostor  

a značíme ji symbolem 𝛺. Jednotlivé možné elementární výsledky pokusu 𝜔 ⊆ 𝛺 nazýváme 

elementární jevy 𝛺 = {𝜔1, 𝜔2, … , 𝜔𝑖}.  

Neprázdný systém všech podmnožin základního prostoru, který je uzavřen vzhledem 

k množinovým operacím nazýváme jevovou 𝝈-algebrou tzv. jevovým polem 𝒜 ⊆ 𝛺. Prvky 

jevového pole jsou sledované náhodné jevy, které obvykle označujeme velkými písmeny 

převážně z počátku latinské abecedy (𝐴, 𝐵, 𝐶, …). Definice jevového pole vychází  

ze dvou tvrzení (axiómů). 

Axiom bezespornosti – jevové pole je možné sestrojit na každém základním prostoru. 

Axiom neúplnosti – na dvouprvkovém či více prvkovém prostoru, lze vytvořit více 

jevových polí.  

  Příklad 2.2 

Vypište níže uvedené podmnožiny náhodných jevů z množiny základního prostoru 𝛺 hod 

hrací kostkou. 

Náhodný pokus – hod kostkou Náhodný jev  Jevové pole 

„padne sudé číslo“ Náhodný jev 𝐴 𝐴 = {𝜔2, 𝜔4, 𝜔6} 

„padne číslo ≥ 3“ Náhodný jev 𝐵 𝐵 = {𝜔3, 𝜔4, 𝜔5, 𝜔6} 

„padne číslo > 6“ Náhodný jev 𝐶 𝐶 =  ∅    Jev nemožný 

„padne číslo < 7“ Náhodný jev 𝐷 𝐷 =  𝛺     Jev jistý 

 

2.2 Základní operace a vztahy mezi náhodnými jevy 

Základní prostor spolu s jevovým polem je měřitelný prostor. Jevy 𝐴, respektive 𝐴1, 𝐴2, … , 𝐴𝑖; 

jsou jevy na tomto prostoru – jedná se o podmnožinu množiny, a proto při základních operacích 

vycházíme ze vztahů, které odpovídají množinovým relacím (místo výrokových). Pro ilustraci 

je u základních operací uvedeno grafické znázornění uvedených vztahů tzv. Vennovy diagramy. 
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Sjednocení jevů (disjunkce) → 𝐴1 ∪ 𝐴2 nastane alespoň jeden z jevů 𝐴1, 𝐴2. Může nastat 

pouze jeden z jevů anebo mohou nastat i oba jevy zároveň. 

𝐴1 ∪ 𝐴2 = {𝜔 ∈ 𝛺; 𝜔 ∈ 𝐴1 ∨ 𝜔 ∈ 𝐴2} 

Obrázek 2.1: Vennův diagram pro sjednocení dvou množin 

 

 

 

 

 

 

Máme-li více náhodných jevů 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ … ∪ 𝐴𝑛 = ⋃ 𝐴𝑖
𝑛
𝑖=1  značí uskutečnění 

alespoň jednoho z náhodných jevů 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 pro 1 ≤ 𝑖 ≤ 𝑛.  

Příklad 2.3 

Jev 𝐴1 na hrací kostce padne sudé číslo; jev 𝐴2 na hrací kostce padne číslo 𝐴2 = {2; 3; 4}. 

Řešení     𝑨𝟏 ∪ 𝑨𝟐 = {𝟐; 𝟑; 𝟒; 𝟔} 

 

Rozdíl jevů → 𝐴1 ∖ 𝐴2 při realizaci jevu 𝐴1 současně nenastane jev 𝐴2. 

𝐴1 ∖ 𝐴2 = {𝜔 ∈ 𝛺; 𝜔 ∈ 𝐴1 ∧ 𝜔 ∉ 𝐴2} 

Obrázek 2.2: Vennův diagram pro rozdíl dvou množin 

 

 

 

 

 

Příklad 2.4 

Jev 𝐴1 na hrací kostce padne číslo větší než tři; jev 𝐴2 na kostce padne liché číslo. 

Řešení  𝑨𝟏 ∖ 𝑨𝟐 = {𝟒; 𝟔} 
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Průnik jevů (konjunkce) → 𝐴1 ∩ 𝐴2 nastane při současném výskytu obou jevů. 

𝐴1 ∩ 𝐴2 = {𝜔 ∈ 𝛺; 𝜔 ∈ 𝐴1 ∧ 𝜔 ∈ 𝐴2} 

Obrázek 2.3: Vennův diagram pro průnik dvou množin 

 

 

 

 

 

Máme-li více náhodných jevů 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛, potom jejich průnik 𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ … ∩

𝐴𝑛 = ⋂ 𝐴𝑖
𝑛
𝑖=1  spočívá v nastoupení všech jevů. 

Příklad 2.5 

Jev 𝐴1 na hrací kostce padne sudé číslo; jev 𝐴2 na kostce padne číslo menší než pět. 

Řešení   𝑨𝟏 ∩ 𝑨𝟐 = {𝟐; 𝟒} 

 

Jev 𝑨𝟏 je podjevem jevu 𝑨𝟐 → 𝐴1 ⊂ 𝐴2 při realizaci jevu 𝐴1 nastává i jev 𝐴2. Jev 𝐴1 má 

za následek jev 𝐴2. Nenastane-li jev 𝐴1 nenastane ani jev 𝐴2. 

𝐴1 ⊂ 𝐴2 = {𝜔 ∈ 𝛺; 𝜔 ∈ 𝐴1 ⟹ 𝜔 ∈ 𝐴2} 

Obrázek 2.4: Vennův diagram znázorňující podmnožinu 

 

 

 

 

 

 

Příklad 2.6 

Jev 𝐴1 na hrací kostce padne číslo dvě; jev 𝐴2 na kostce padne sudé číslo. Jev A1 je  

podjevem jevu 𝐴2. 

Řešení   𝑨𝟏 ⊂ 𝑨𝟐 = {𝟐} 
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Rovnocennost jevů → 𝐴1 = 𝐴2 při realizaci jevu 𝐴1 nastane také jev 𝐴2 a naopak.  

Jev 𝐴1 je ekvivalentní s jevem 𝐴2.   

𝐴1 ⊂ 𝐴2 ∧ 𝐴2 ⊂ 𝐴1 

Obrázek 2.5: Vennův diagram shodných množin 

 

 

 

 

 

 

Příklad 2.7 

Jev 𝐴1 při hodu hrací kostkou padne sudé číslo; jev 𝐴2 při hodu kostkou padne číslo  

dělitelné dvěma. 

 

Neslučitelnost jevu → 𝐴1 ∩ 𝐴2 = ∅ výskyt jednoho jevu vylučuje možnost výskytu 

druhého jevu, tj. jejich průnik je jev nemožný. Dva jevy 𝐴1, 𝐴2 nemohou nastat současně, 

nemají-li spolu žádný možný společný výsledek. 

Obrázek 2.6 Vennův diagram disjunktních množin 

 

 

 

 

 

 

 

Příklad 2.8 

Jev 𝐴1 na hrací kostce padne číslo šest; jev 𝐴2 na hrací kostce padne liché číslo. 
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Opačný jev → 𝐴̅ spočívá v nenastoupení jevu 𝐴. Nastanou všechny náhodné jevy 

neobsažené v jevu 𝐴. 

𝐴̅ = Ω − 𝐴 = {𝜔 ⊂ 𝛺; ∀ 𝜔 ∉ 𝐴 ⟹ 𝜔 ∈ 𝐴̅} 

Obrázek 2.7: Vennův diagram pro doplněk 

 

 

 

 

 

Příklad 2.9 

Jev 𝐴 při hodu kostkou padne číslo 6; jev opačný 𝐴̅ při hodu kostkou padnou 1 nebo 2 nebo 

3 nebo 4 nebo 5. 

2.3 Pravděpodobnost náhodného jevu 

V souvislosti s náhodnými jevy bylo uvedeno, že systém podmnožin základního prostoru, který 

je uzavřen vzhledem k množinovým operacím, se nazývá jevové pole 𝓐 .  

Jevové pole spolu se základním prostorem 𝜴 označujeme jako měřitelný prostor. Míru 

očekávání výskytu jevu vyjadřujeme pomocí pravděpodobnosti.  

Pravděpodobnost náhodného jevu P je reálné číslo, které vyjadřuje míru možnosti 

nastoupení náhodného jevu v náhodném pokusu. 

Existují různé definice pravděpodobnosti. Všechny však mají určité společné vlastnosti  

a axiomy (tvrzení), o jejichž platnosti nepochybujeme. 

2.3.1 Axiomatická teorie pravděpodobnosti (teoretická) 

Axiomatickou teorii formuloval A. N. Kolmogorov. Jedná se o teorii, která je základem celé 

současné pravděpodobnosti. Vychází ze skutečnosti, že šanci jevu na jeho uskutečnění lze 

vyjádřit pomocí pravděpodobnosti, což je funkce, která každému jevu přiřazuje hodnotu od  

0 do 1 za předpokladu, že tato funkce splňuje určité axiomy. Axiomy jsou základní předpoklady 

(tvrzení), jejichž správnost byla ověřena zkušeností a v rámci dané teorie se nedokazují. 

Axiom 1: axiom nezápornosti → 𝑃(𝐴) ≥ 0 ∀ 𝐴 ∈ 𝒜; pravděpodobnosti náhodného jevu 

𝑃(𝐴) je vždy přiřazeno nezáporné číslo. 
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Axiom 2: axiom normovanosti → 𝑃(𝛺) = 1; pravděpodobnost jistého jevu. Základní 

prostor obsahuje všechny možné výsledky měření, které mohou nastat (Ω je jev jistý). 

Axiom 3: axiom součtu pravděpodobnosti nekonečně mnoha neslučitelných 

náhodných jevů → 𝑃(⋃ 𝐴𝑖
∞
𝑖=1 ) = ∑ 𝑃(𝐴𝑖)

∞
𝑖=1 ; pravděpodobnost nastolení navzájem 

neslučitelných náhodných jevů se rovná pravděpodobnosti jejich součtu. 

Systém axiómů, stejně jako, jevového pole (viz kapitola 2.1), vychází ze dvou tvrzení: 

Bezespornost → pravděpodobnost, lze sestrojit na každém základním prostoru; 

Neúplnost → na každém měřitelném prostoru lze sestrojit více pravděpodobností. 

Tato teorie nedává návod na to, jak vypočítat pravděpodobnost náhodných jevů. 

   Příklad 2.10 

Vypočítejte pravděpodobnost, že na hrací kostce padne číslo tři. 

Řešení 

Náhodný jev 𝐴 „padne číslo tři“ 𝐴 = {𝜔3} 

Pravděpodobnost jevu 𝐴, který může nastat při hodu hrací kostkou vypočítáme pomocí 

axiomatické definice pravděpodobností. Vycházíme ze skutečnosti, že není potřeba 

experimentu, na základě teoretické znalosti, že základní prostor 𝛺 je vymezen množinou 

všech možných výsledků elementárních jevů 𝜔1, 𝜔2, … , 𝜔6; 𝛺 = {𝜔1, 𝜔2, … , 𝜔6}. 

𝑃(𝜔3) =
1

6
= 0,166̅ 

Vlastnosti pravděpodobnosti 

1. Pravděpodobnost libovolného náhodného jevu 𝐴 je číslo z intervalu 0 ≤ 𝑃(𝐴) ≤ 1. 

2. Pravděpodobnost jistého jevu je rovna jedné 𝑃(𝛺) = 1. 

3. Pravděpodobnost nemožného jevu je rovna nule 𝑃(∅) = 0. 

4. Pravděpodobnost opačného jevu 𝑃(𝐴̅) = 1 − 𝑃(𝐴). 

5. Dva rovnocenné jevy jsou i stejně pravděpodobné 𝑃(𝐴) = 𝑃(𝐵). 

6. Jestliže jev 𝐴 je částí jevu 𝐵, pak 𝑃(𝐴) ≤ 𝑃(𝐵). 

7. Pro dva libovolné slučitelné jevy 𝐴, 𝐵 platí, že pravděpodobnost jejich sjednocení se 

rovná součtu (věta o sčítání pravděpodobností) pravděpodobností jednotlivých jevů 

zmenšenému o pravděpodobnost jejich průniku. Zjednodušeně při sčítání pravděpodobnosti 

jevů musíme odečíst pravděpodobnost výsledků, které jsou příznivé oběma jevům. 

       𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) (2.1) 
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    Příklad 2.11 

 Student Jan a studentka Jana počítají současně příklad z matematiky. Každý ze studentů 

 vypočítá správně příklad s pravděpodobností 0,5. Jaká je pravděpodobnost, že příklad bude 

 vyřešen alespoň jedním studentem? 

 Řešení 

 Jev 𝐴 … Jan vypočítá příklad … 𝑃(𝐴) = 0,5 

 Jev 𝐵 … Jana vypočítá příklad … 𝑃(𝐵) = 0,5 

 V tomto případě se jedná o jevy slučitelné. K řešení použijeme vztah 2.1. 

       𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) = 0,5 + 0,5 − 0,25 = 0,75 

    Pravděpodobnost, že příklad bude vyřešen alespoň jedním studentem, je 0,75. 

 

8. Pro dva neslučitelné jevy 𝐴 a 𝐵 platí, že průnik jevů je jev nemožný. Prosté sčítání 

pravděpodobnosti je možné pouze v případě jevů, které se navzájem vylučují. 

      𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) (2.2) 

Příklad 2.12 

Jaká je pravděpodobnost, že při hodu kostkou padne číslo větší než 3 a padne číslo 2.  

Řešení 

V tomto případě se jedná o jevy neslučitelné. K řešení použijeme vztah 2.2. 

𝑃(𝐴) = 𝑃(4) + 𝑃(5) + 𝑃(6) = 1/6 + 1/6 + 1/6 = 3/6 

𝑃(𝐵) = 𝑃(2) = 1/6 

𝑃(𝐴 ∪ 𝐵) =
3

6
+

1

6
=

4

6
= 0,666̅ ≅ 67 % 

 

9. Pro pravděpodobnost průniku dvou závislých jevů platí 

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ∙ 𝑃(𝐵|𝐴) = 𝑃(𝐵) ∙ 𝑃(𝐴|𝐵)1 (2.3) 

Pravděpodobnost průniku jevů nám umožňuje vyjádřit věta o násobení pravděpodobností. 

Abychom mohli toto pravidlo definovat, musíme nejdříve vysvětlit pojem podmíněná 

pravděpodobnost. Tyto pravděpodobnosti vyjadřují závislost jevů.  

 
1 podmíněná pravděpodobnost 
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Pravděpodobnosti 𝑃(𝐴|𝐵) a je pravděpodobnost náhodného jevu 𝐴, která je ovlivněna 

podmínkou, že nastal nějaký náhodný jev 𝐵, který má nenulovou pravděpodobnost (vztah 2.4). 

Obdobně vyjadřujeme i pravděpodobnost 𝑃(𝐵|𝐴) (vztah 2.5). 

𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 𝑃(𝐵) ≠ 0 (2.4) 

𝑃(𝐵|𝐴) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐴)
 𝑃(𝐴) ≠ 0 (2.5) 

Z uvedených vztahů vychází tzv. pravidlo o násobení pravděpodobností a lze jej rozšířit 

i na průnik více jevů. Pravděpodobnost průniku dvou libovolných jevů 𝐴 a 𝐵 je rovna součinu 

pravděpodobnosti jevu 𝐴 a podmíněné pravděpodobnosti jevu 𝐵 vzhledem k jevu 𝐴 nebo 

součinu nepodmíněné pravděpodobnosti jevu 𝐵 a podmíněné pravděpodobnosti jevu  

𝐴 vzhledem k jevu 𝐵 vztah 2.3. 

 

Příklad 2.13 

Jaká je pravděpodobnost výběru hlíz při třídění určitého druhu brambor v případě, kdy 

brambor má více než dvě očka a jeho hmotnost je menší než 70 g. Bylo zjištěno, že 

pravděpodobnost, že brambor má více než dvě očka, je 0,7. Dalším tříděním brambor s více 

než dvěma očky podle hmotnosti bylo zjištěno, že pravděpodobnost výběru brambor  

o hmotnosti menší než 70 g je 0,5. 

Řešení 

Jev 𝐴 … brambor má více než dvě očka … 𝑃(𝐴) = 0,7 

Jev 𝐵 … brambory s 2 očky a hmotností menší než 70 g  

Podmíněná pravděpodobnost 𝑃(𝐵|𝐴) = 0,5  

V tomto případě se jedná o jevy závislé. K řešení použijeme vztah 2.3. 

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ∙ 𝑃(𝐵|𝐴) = 0,7 ∙ 0,5 = 0,35 = 35 % 

Pravděpodobnost výběru hlíz brambor, které mají více než dvě očka a jsou současně lehčí            

než 70 g, je 35 %. 

10. Pro pravděpodobnost průniku dvou nezávislých jevů platí 

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ∙ 𝑃(𝐵) (2.6) 

Pokud nastoupení jevu 𝐴 neovlivňuje pravděpodobnost nastoupení jevu 𝐵, tj. 𝑃(𝐵|𝐴) =

𝑃(𝐵), neovlivňuje ani nastoupení jevu 𝐵 pravděpodobnost jevu 𝐴, tj. 𝑃(𝐴|𝐵) = 𝑃(𝐴) znamená 
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to, že jevy 𝐴 a 𝐵 jsou jevy nezávislé. Pro nezávislé jevy 𝐴 a 𝐵 se pravidlo pro výpočet průniku 

zjednoduší a průnik jevů 𝐴, 𝐵 je přímo jen součinem pravděpodobností těchto jevů. 

 Příklad 2.14 

 Jaká je pravděpodobnost, že student uspěje v akademickém roce 2024/25 u zkoušek ze 

 Statistiky I (zimní semestr) a Statistiky II (letní semestr)? Víme, že v zimním semestru je  

 pravděpodobnost úspěchu 0,75. V letním semestru je pravděpodobnost, že student zkoušku 

 úspěšné vykoná, 0,8. 

 Řešení  

 Jev 𝐴 … student uspěje u zkoušky ze Statistiky I … 𝑃(𝐴) = 0,75 

 Jev 𝐵 … student uspěje u zkoušky ze Statistiky II … 𝑃(𝐵) = 0,8 

 Jedná se o jevy nezávislé. K řešení použijeme vztah 2.6. 

        𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ∙ 𝑃(𝐵) = 0,75 ∙ 0,8 = 0,6 

2.3.2 Statistická definice pravděpodobnosti  

Statistická definice pravděpodobnosti (empirická, četnostní) je založena na předpokladu 𝑛-krát 

opakování nezávislého náhodného pokusu, při kterém nastoupí sledovaný jev 𝑚-krát.  

Při rostoucím počtu pokusů kolísá pozorovaná relativní četnost (𝑚/𝑛) jevu 𝐴 stále v užších 

mezích (ustaluje se na určité hodnotě) kolem určitého čísla, toto číslo můžeme považovat za 

pravděpodobnost jevu 𝐴 nebo číslo blízké této pravděpodobnosti. Hodnotu pravděpodobnosti 

nastolení jevu nemůžeme přesně experimentálně zjistit, ale můžeme se jí přiblížit prodloužením 

posloupnosti prováděných pokusů. 

Statistická definice pravděpodobnosti jevu A je definována vztahem: 

𝑃(𝐴) = lim
𝑛→+∞

𝑚

𝑛
 

(2.7) 

𝑚 …. počet pokusů, ve kterých nastal jev 𝐴, 

𝑛 …. počet všech pokusů. 

 

Výhodou statistické definice pravděpodobnosti je skutečnost, že v případě, kdy jsme 

schopni zajistit, aby měření náhodných pokusů probíhalo za stejných vstupních podmínek, 

máme předpověď nastolení náhodného jevu podloženou reálným měřením. Určitou nevýhodou 

je pak skutečnost, že nikdy nejsme schopni experimentálně zjistit přesnou hodnotu limity, počet 
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pokusů je vždy limitně konečný a tím se vylučuje předpoklad, že každý elementární jev má 

stejnou možnost nastolení. 

Příklad 2.15 

Vypočítejte, jaká je pravděpodobnost, že při opakovaných nezávislých pokusech hodem 

kostkou padne číslo větší než 3. Při statistickém výpočtu pravděpodobnosti vycházíme 

z opakování experimentu. 

Řešení 

Náhodný jev 𝐴 … „padne číslo> 3“ je 𝐴 = {𝜔4, 𝜔5, 𝜔6} 

𝒏 = 𝟏𝟎 𝑃(𝐴) =
6

10
= 0,6 

𝒏 = 𝟏𝟎𝟎 𝑃(𝐴) =
43

100
= 0,43 

𝒏 = 𝟏𝟎𝟎𝟎 𝑃(𝐴) =
495

1000
= 0,495 

 

Náhodný pokus není možno donekonečna opakovat, avšak při dostatečně velkém množství 

náhodných pokusů lze pravděpodobnost nastolení jevu s velkou přesností odhadnout. Toto 

pravidlo vychází ze slabého zákona velkých čísel2. Zákon popisuje skutečnost, že s rostoucím 

počtem opakovaných nezávislých náhodných pokusů se empirické charakteristiky, které 

popisují výsledky těchto pokusů, blíží k teoretickým charakteristikám. 

Obrázek 2.8: Počet pokusů n =100 Obrázek 2.9: Počet pokusů n =1000 

  

Z grafického znázornění příkladu 2.15, které vychází z 1000 opakování vyplývá,  

že u prvních 100 hodů kostkou (obrázek 2.8) je patrné, že relativní četnosti jevu 𝐴 se stabilizuje  

a blíží se hodnotě 0,4. Z obrázku 2.9, ve kterém jsou zaznamenány výsledky u více než 1000 

náhodných pokusů, je zřejmé, že hodnota relativní četnosti se ustaluje kolem hodnoty 0,5. 

 
2 ANDĚL, Jiří. Základy matematické statistiky. Vyd. 3. Praha: Matfyzpress, 2011. ISBN 978-80-7378-162-0. 
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2.3.3 Klasická definice pravděpodobnosti 

Klasická definice pravděpodobnosti je historicky nejstarším způsobem zavedení 

pravděpodobnosti. Definice je založena na pojmu stejného množství výskytu všech jevů a je 

použitelná pouze v případě, že množina všech elementárních jevů je konečná (můžeme vyjádřit 

množinu všech čísel) a žádné dva výsledky nemohou nastat současně. I přes tuto skutečnost, je 

tato definice často využívána k výpočtu pravděpodobnosti. 

Může-li určitý náhodný pokus vykázat konečný počet 𝑛 různých výsledků, které jsou stejně 

možné, a jestliže 𝑚 těchto výsledků má za následek nastoupení jevu 𝐴, kdežto zbývajících 

𝑛 − 𝑚 výsledků realizaci jevu 𝐴 vylučuje, pak pravděpodobnost jevu 𝐴 je definována vztahem: 

𝑃(𝐴) =
𝑚

𝑛
 (2.8) 

𝑚 … ‖𝐴‖ počet prvků množiny 𝐴  počet pokusů příznivých pro opakování jevu 𝐴, 

𝑛 …. ‖𝛺‖ počet prvků množiny všech jevů (počet všech pokusů). 

 

Příklad 2.16 

Vycházíme z příkladu 1.3. Jaká je pravděpodobnost, že při jednom hodu kostkou: 

a) Náhodný jev 𝐴 „padne sudé číslo“. 

b) Náhodný jev 𝐵 „padne číslo ≥ 3“ 

Řešení 

a) 𝑛 = 6, 𝑚 = 3    𝑃(𝐴) =
3

6
= 0,5 = 50 % 

b) 𝑛 = 6, 𝑚 = 4   𝑃(𝐴) =
4

6
= 0,666̅ ≅ 67 % 
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Shrnutí kapitoly 

Axiomatická definice pravděpodobnosti → teoretická, vychází z teoretických předpokladů, 

jak se bude náhodný jev za určitých předpokladů chovat. Nemáme možnost provést měření  

a nemáme ani naměřené hodnoty. 

Konkrétní výpočet pravděpodobnosti je možný např. na základě definice pravděpodobnosti 

statistické nebo klasické. 

Statistická definice pravděpodobnosti → empirická, je založena na pozorování. Popisuje 

budoucí náhodnost nastolení jevu na základě již uskutečněných náhodných pokusů, kterých  

je limitně mnoho → Ω limitně „nekonečně konečná“. 

Klasická definice pravděpodobnosti → empirická, je založena na pozorování. Popisuje 

budoucí náhodnost nastolení před provedením náhodných pokusů. Všechny elementární 

výsledky mají stejnou šanci nastat a množina všech elementárních jevů je konečná →  

𝛺 konečná množina prvků. 

Literatura 

ANDĚL, Jiří. Základy matematické statistiky. Vyd. 3. Praha: Matfyzpress, 2011. ISBN 978-

80-7378-162-0. 
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3243-5. 

HEBÁK, Petr a Jana KAHOUNOVÁ. 2014. Počet pravděpodobnosti v příkladech. Praha: 

Informatorium. ISBN 978-80-7333-109-2. 
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2 Kontrolní otázky 

1. Co je náhodný jev?  

2. Jaký je rozdíl mezi jevem jistým a jevem nemožným?  

3. Co je základní prostor a jak se značí?  

4. Uveďte příklad základního prostoru pro hod hrací kostkou.  

5. Popište sjednocení jevů a uveďte příklad.  

6. Popište rozdíl jevů a uveďte příklad.  

7. Popište průnik jevů a uveďte příklad.  

8. Co znamená, když je jev 𝐴1 podjevem jevu 𝐴2? 

9. Kdy jsou jevy rovnocenné?  

10. Kdy jsou dva jevy neslučitelné?  

11. Co je opačný jev? 

12. Co vyjadřuje pravděpodobnost náhodného jevu?  

13. Kdo formuloval axiomatickou teorii pravděpodobnosti?  

14. Jaké jsou vlastnosti pravděpodobnosti?  

15. Kdy jsou jevy 𝐴 a 𝐵 nezávislé?  

16. Na čem je založena statistická definice pravděpodobnosti?  

17. Na čem je založena klasická definice pravděpodobnosti?  

18. Kdy je klasická definice pravděpodobnosti použitelná?  
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2 Příklady k procvičení 

2.1 Náhodný jev a základní prostor: 

2.1.1 Z pytlíku plného modrých, červených a zelených kuliček náhodně vytáhnete jednu 

kuličku. 

a) Co je v tomto případě náhodný pokus?  

b) Jaký je základní prostor 𝛺 pro tento pokus?  

c) Uveďte příklad jednoho elementárního jevu.  

d) Uveďte příklad jistého jevu.  

e) Uveďte příklad nemožného jevu.  

 

2.2 Základní operace a vztahy mezi náhodnými jevy 

2.2.1 Ptáme se zákazníka, jak je spokojený s novým smartphonem.  

Jev 𝐴: "Zákazník je spokojen s výdrží baterie"  

Jev 𝐵: "Zákazník je spokojen s kvalitou fotoaparátu“  

Definujte sjednocení jevu 𝐴 a 𝐵. 

 

2.2.2 Sledujeme zápis jednoho studenta do předmětů Statistika a Informatika. Volba 

předmětů. 

Jev 𝐴: "Student si zapsal kurz Statistika" 

Jev 𝐵: "Student si zapsal kurz Informatika" 

Definujte průnik jevu 𝐴 a 𝐵. 

 

2.2.3 Student si vybírá obor na univerzitě. 

Jev 𝐴: "Student si vybral obor Elektrotechnika " 

Jev 𝐵: "Student si vybral obor Strojírenství " 

Definujte neslučitelnost jevu 𝐴 a 𝐵. 

 

2.2.4 Sledujeme stav semaforu. 

Jev 𝐴: "Semafor svítí červeně" 

Definujte opačný jev jevu 𝐴.  
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2.3 Pravděpodobnost náhodného jevu 

2.3.1 V obchodě 70 % zákazníků kupuje chléb (jev 𝐴) a 40 % zákazníků kupuje mléko (jev 

𝐵). 30 % zákazníků kupuje chléb i mléko. Jaká je pravděpodobnost, že náhodně vybraný 

zákazník koupí chléb nebo mléko (nebo obojí)? 

                                                            [0,80] 

 

2.3.2 Při výběru jednoho studenta z kurzu je pravděpodobnost, že student je z prvního ročníku 

0.6, a pravděpodobnost, že student je z druhého ročníku je 0.4. (Student nemůže být 

současně z prvního i druhého ročníku). Jaká je pravděpodobnost, že náhodně vybraný 

student je z prvního nebo druhého ročníku? 

             [1] 

 

2.3.3 Ve třídě je 60 % dívek. Z dívek 30 % nosí brýle. Jaká je pravděpodobnost, že náhodně 

vybraný student je dívka a nosí brýle?  

              [0,18] 

 

2.3.4 Dva stroje pracují nezávisle na sobě. Pravděpodobnost, že stroj A pracuje bez poruchy 

je 0.9. Pravděpodobnost, že stroj B pracuje bez poruchy je 0.8. Jaká je pravděpodobnost, 

že oba stroje budou pracovat bez poruchy současně?  

              [0,72] 

 

2.3.5 Provedli jste 50 hodů symetrickou mincí a panna padla 28krát.  

a) Jaká je statistická pravděpodobnost, že padne panna na základě tohoto experimentu? 

                  [0,56] 

b) Jak by se změnila tato pravděpodobnost, kdybyste provedli 1000 hodů místo 50?    

[𝑐𝑐𝑎 0,50] 

 

2.3.6 V balíčku 32 mariášových karet jsou 4 esa. Jaká je pravděpodobnost, že náhodně 

vytažená karta bude eso?  

                         [0,125 %] 

 

2.3.7 Určete pravděpodobnost, že při hodu třemi stejnými mincemi padne: 

a) dvakrát rub a jednou líc;                                                       [0,375]  

b) třikrát líc;                             [0,125] 

c) na všech mincích stejná strana?                                                                        [0,25]                                                                                     
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2.3.8 V nákupní tašce máme osm banánů. Šest banánů je zralých a dva banány jsou nahnilé. 

Jaká je pravděpodobnost, že z 8 banánů vytáhneme náhodně: 

a) jeden nahnilý banán;                                                                                          [0,25]   

b) jeden zralý banán?                   [0,75]   

2.3.9 Jan a Zuzka jsou na procházce v parku. Potkají babičku a ta se jich zeptá, jestli mají 

napsané úkoly. Předpokládáme, že Jan zalže s pravděpodobností 0,2 a Zuzka  

s pravděpodobností 0,3. 

a) Zeptáme-li se obou nezávisle na sobě, zda mají napsané úkoly, jaká je 

pravděpodobnost, že budou lhát?                                   [0,06 %]               

b) Zeptáme-li se obou nezávisle na sobě, zda mají napsané úkoly, jaká je 

pravděpodobnost, že řeknou pravdu?                                       [0,56 %]               

2.3.10 Studen jde do studovny, kde je učebna s 25 počítači. Jaká je pravděpodobnost, že ve 

studovně bude volný alespoň jeden počítač za předpokladu, že pravděpodobnost 

obsazení PC ve studovně je 0,90.                        [0,928 %] 
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3 NÁHODNÉ VELIČINY 

V této kapitole se budeme věnovat číselnému vyjádření výsledků náhodného pokusu.  

Příklad 3.1 

V náhodně vybrané porodnici se během jednoho dne narodily tři děti. Definujte základní 

prostor elementárních jevů, které se vztahují k možným variantám pohlaví narozených dětí 

(děvče 𝐷; kluk 𝐾) a podmnožinu náhodného jevu narození alespoň jedné dívky. 

Řešení 

Množina všech možných výsledků se skládá z osmi elementárních jevů: 

Ω = {𝜔𝐾𝐾𝐾, 𝜔𝐾𝐾𝐷 , 𝜔𝐾𝐷𝐾 , 𝜔𝐷𝐾𝐾, 𝜔𝐷𝐷𝐾, 𝜔𝐷𝐾𝐷 , 𝜔𝐾𝐷𝐷 , 𝜔𝐷𝐷𝐷} 

Z této množiny můžeme definovat podmnožinu náhodných jevů narození alespoň jedné 

dívky:  Ω𝐷 = {𝜔𝐾𝐾𝐷 , 𝜔𝐾𝐷𝐾 , 𝜔𝐷𝐾𝐾, 𝜔𝐷𝐷𝐾, 𝜔𝐷𝐾𝐷 , 𝜔𝐾𝐷𝐷 , 𝜔𝐷𝐷𝐷} 

Tento výčet výskytu všech elementárních jevů plynoucích z náhodného pokusu neposkytuje 

informaci o pravděpodobnosti daného jevu, ale jen o možných kombinacích jeho výskytu. 

Takový kvalitativní výrok je často nepostačující. Výsledky náhodných pokusů je třeba 

kvantifikovat neboli číselně vyjádřit (počet dívek, počet bodů z testů, počet bodů na hrací 

kostce). 

   Příklad 3.2  

Vycházíme z příkladu 3.1. Přiřaďte každému z možných výsledků náhodného pokusu 

hodnotu, která odpovídá počtu narozených dívek.  

Řešení 

Náhodná veličina 𝑋 počet narozených dívek je realizována pouze konečně mnoha jevy 

𝐾𝐾𝐾, 𝐾𝐾𝐷, 𝐾𝐷𝐾, 𝐷𝐾𝐾, 𝐷𝐷𝐾, 𝐷𝐾𝐷, 𝐾𝐷𝐷, 𝐷𝐷𝐷.  

Počet dívek Možné výsledky náhodného pokusu 

0 𝐾𝐾𝐾 

1 𝐾𝐾𝐷; 𝐾𝐷𝐾; 𝐷𝐾𝐾 

2 𝐷𝐷𝐾; 𝐷𝐾𝐷; 𝐾𝐷𝐷 

3 𝐷𝐷𝐷 

 

Kvantitativní charakteristiku náhodného pokusu nazýváme náhodná veličina. Náhodnou 

veličinu definujeme jako proměnnou, která nabývá různých hodnot v závislosti na náhodě. 

Náhodná veličina je reálné číslo a je jednoznačně určena výsledkem náhodného pokusu. 
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Náhodnou veličinu obvykle označujeme velkými písmeny z konce abecedy (𝑋, 𝑌). Konkrétní 

hodnoty náhodné veličiny značíme odpovídajícími malými písmeny (𝑥: 𝑥1, 𝑥2, … ; 𝑦: 𝑦1, 𝑦2, … ). 

Náhodná veličina 𝑿 je reálná funkce 𝑋(𝜔) definovaná na množině všech elementárních 

jevů 𝜔 ∈ Ω, která každému možnému výsledku náhodného pokusu přiřadí reálné číslo (𝑥 ∈ 𝑅) 

z množiny možných reálných hodnot. 

Množina všech hodnot {𝑥 = 𝑋(𝜔), 𝜔 ∈ Ω} se nazývá základní soubor. Celý základní 

prostor Ω často není znám (množina Ω může být i nekonečná). Výhodou náhodné veličiny 𝑋 je, 

že převádí základní prostor možných výsledků náhodných jevů na čísla. Tyto hodnoty „čísla“ 

nám následně slouží k popisu vlastností základního souboru (obr. 3.1). 

Obrázek 3.1: Grafické znázornění příkladu 3.1 a 3.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z hlediska pravidel matematických operací a analýz rozlišujeme dva typy náhodných 

veličin diskrétní a spojité. 

Spojitá náhodná veličina 𝑋 nabývá všech hodnot z konečného či nekonečného intervalu. 

Příkladem může být výška rostliny, hmotnost zvířete, životnost žárovky, atmosférický tlak. 

Diskrétní (nespojitá) náhodná veličina 𝑋 nabývá od sebe vzájemně oddělené hodnoty.  

Je to taková veličina, jejíž obor hodnot neboli množina všech čísel, kterým se může rovnat  

je konečná, nebo nanejvýš spočtená (počet možných hodnot je nekonečný, ale lze je uspořádat 

do posloupnosti).  Jako příklad můžeme uvést počet zkoušek za semestr, počet pokusů  

u zkoušek – diskrétní náhodná veličina s konečným oborem hodnot. Počet přihrávek fotbalistů, 

než padne gól – diskrétní náhodná veličina s nekonečným oborem hodnot.  

Diskrétní náhodná veličina se netýká pouze kvantitativních dat, neboť číselné vyjádření 

výsledku náhodného pokusu může popisovat i kvalitativní data, jako např.: stupeň vzdělání, 

známky ve škole atd. 
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K úplnému charakterizování náhodné veličiny je potřeba znát informace o množině 

možných hodnot, ale také je důležité znát pravděpodobnost, s jakou náhodná veličina 

nabude určité hodnoty nebo hodnoty z určitého intervalu. Náhodná veličina je tedy 

z pravděpodobnostního hlediska zcela popsána, jestliže známe její hodnoty či intervaly hodnot 

a pravděpodobnosti těchto hodnot nebo intervalů. Výskyt hodnot náhodné veličiny podléhá 

určitým zákonitostem. Zákonitost výskytu hodnot náhodné veličiny vyplývá z rozdělení hodnot 

náhodné veličiny.  

Každý předpis, který určuje vztah mezi možnými hodnotami náhodné veličiny  

a pravděpodobností jejich výskytu, se nazývá zákon rozdělení náhodné veličiny. Jinými slovy 

rozdělení náhodné veličiny je pravidlo, které každé hodnotě nebo každému intervalu hodnot 

přiřazuje pravděpodobnost, že náhodná veličina nabude této hodnoty nebo hodnoty z tohoto 

intervalu – hovoříme o teoretickém rozdělení pravděpodobnosti. 

Zákon rozdělení náhodné veličiny neboli teoretické rozdělení pravděpodobnosti můžeme 

ve statistice charakterizovat pomocí: 

• průběhu funkce – průběhem funkce v tomto případě rozumíme určení vlastností 

funkce a její následné grafické vyjádření. 

• parametrů rozdělení – jedná se o číselné charakteristiky náhodných veličin, které 

nám poskytují souhrnnou informaci o určitém chování náhodných veličin (viz 

kapitola Číselné charakteristiky náhodných veličin). 

3.1 Distribuční funkce  

Distribuční funkce kumulativním způsobem popisuje rozdělení diskrétních i spojitých 

náhodných veličin. Distribuční funkcí náhodné veličiny X nazýváme funkci F(x), která je pro 

všechny reálné hodnoty 𝑥 definována vztahem (3.1). 

Distribuční funkce přiřazuje každému reálnému číslu pravděpodobnost, že náhodná veličina  

𝑋 nabude hodnoty menší nebo rovno 𝑥 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 𝑃({𝜔: 𝑋(𝜔) ≤ 𝑥}) (3.1) 

a  

𝑃 (𝑎 < 𝑋 ≤ 𝑏) =  𝐹𝑥(𝑏) − 𝐹𝑥(𝑎), pro libovolná reálná čísla 𝑎, 𝑏, kde 𝑎 ≤ 𝑏 (3.2) 
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Vlastnosti distribuční funkce 

Obor funkčních hodnot distribuční funkce leží mezi 0 a 1, tj. 

0 ≤ 𝐹(𝑥) ≤ 1. 

Distribuční funkce libovolné náhodné veličiny je neklesající, tj. pro libovolné 𝑎, 𝑏 ∈ 𝑅, 

 𝑎 ≤ 𝑏, platí: 𝐹𝑥(𝑎) ≤ 𝐹𝑥(𝑏).  

Pro každou distribuční funkci platí: 

𝐹(−∞) = lim
𝑥→−∞

𝐹(𝑥) = 0; 𝐹(+∞) = lim
𝑥→+∞

𝐹(𝑥) = 1. 

Distribuční funkce je zprava spojitá v libovolném bodě 𝑥 ∈ 𝑅. Lze se setkat i s definicí, 

která vychází z funkce zleva spojité, ale vzhledem k tomu, že budeme využívat při výpočtu 

statistické programy, budeme vycházet ze stejného předpisu, jako je v softwaru a vždy budeme 

používat funkci spojitou zprava.  

U distribuční funkce je teoretický předpis, který definuje pravděpodobnost pro náhodnou 

veličinu 𝑋. V případě, že neznáme přesné vyjádření teoretického předpisu funkce, můžeme ji 

aproximovat výběrovou distribuční funkci 𝑭𝒏(𝒙), která kumulativním způsobem popisuje 

pravděpodobnostní chování pozorovaných hodnot za splnění předpokladu reprezentativnosti 

experimentálního vzorku pozorování. Z hodnot výběrové distribuční funkce a jejího grafického 

znázornění můžeme usuzovat na vlastnosti teoretické distribuční funkce (viz kapitola 

Statistická indukce). 

3.1.1 Funkce rozdělení diskrétní náhodné veličiny 

Distribuční funkce 𝑭(𝒙) diskrétní náhodné veličiny je funkce schodovitého tvaru (obr. 3.2). 

Jedná se o funkci, která je mezi jednotlivými body 𝑥𝑖 konstantní, a právě v každé hodnotě 

𝑥1, 𝑥2, … , 𝑥𝑛 dochází ke skoku. Výška skoku je rovna hodnotě pravděpodobnosti 𝑝(𝑥𝑖) → 𝑝𝑖. 

Body vyznačené prázdným kolečkem znamenají, že distribuční funkce není určena v bodě 

skoku, ale až výše na úrovni dalšího schodu, kde je vyznačena plným kolečkem, tedy tak, že 

funkce 𝐹(𝑥) je zprava spojitá – uzavřený interval je ten levý a otevřený ten pravý. 

Diskrétní náhodnou veličinu 𝑋 s distribuční funkcí 𝐹(𝑥) charakterizuje pravděpodobnostní 

funkce, která vychází ze vztahu 3.1. 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥)  
  (3.3) 
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Pravděpodobnostní funkce 𝑃(𝒙) je nejjednodušší formou vyjádření zákona rozdělení 

diskrétní náhodné veličiny (obr. 3.3). Pravděpodobnostní funkce udává pravděpodobnost, že 

náhodná veličina 𝑋 nabude právě hodnoty 𝑥. 

𝑃(𝑥) = 𝑃(𝑋 = 𝑥) (3.4) 

  

Obrázek 3.2 a 3.3: Funkce rozdělení diskrétníá náhodné veličiny z příkladu 3.3 

                   Distribuční funkce 𝑭(𝒙)                            Pravděpodobnostní funkce  𝑷(𝒙)                                

 

 

 

 

Pravděpodobnostní funkce nabývá hodnot od nuly do jedné, což plyne z axiomu  

o pravděpodobnosti náhodného jevu: 0 ≤ 𝑃(𝑥) ≤ 1; součet všech hodnot pravděpodobnostní 

funkce je roven jedné: ∑ 𝑃(𝑥) = 1. 

Roztřídění hodnot a uspořádání distribuční funkce a pravděpodobnostní funkce lze provést 

různými způsoby. V příkladu 3.2 a 3.3 si budeme ilustrovat matematický zápis, tabulku 

rozdělení a graf. 

 

   Příklad 3.3 

Zákazník si jde koupit zboží, které bývá na trhu k dostání s pravděpodobností 0,6.  

Je rozhodnutý, že navštíví maximálně čtyři prodejny. Náhodný jev můžeme označit 

𝐴𝑖 (𝑖 = 1; 2; 3; 4). Tento jev nastane v případě, když v i-té prodejně je požadované zboží 

𝑝(𝐴𝑖) = 0,6. Pro jednoduchost budeme předpokládat, že jevy 𝐴1, … , 𝐴4 jsou skupinově 

nezávislé. 

a) Jaká je pravděpodobnost, že zákazník koupí zboží už v první, nebo až v druhé, třetí  

či čtvrté prodejně.  

b) Jaká je pravděpodobnost, že zákazník si koupí zboží v první až čtvrté prodejně.  

 

 

𝑃(𝑋 = 2) 
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Pokračování příkladu 3.3 

Náhodná veličina 𝑋 představuje počet navštívených prodejen. Výsledky realizace náhodné   

veličiny mohou nabývat v tomto případě konkrétních hodnot 𝑥 = 1; 𝑥 = 2; 𝑥 = 3; 𝑥 = 4. 

Počet navštívených prodejen – diskrétní náhodnou veličinu. 

ad a) Hodnoty pravděpodobnosti vyjádříme pomocí pravděpodobnostní funkce 𝑷(𝒙). 

Matematický zápis 

Zákazník navštíví pouze jednu prodejnu, kde mají požadované zboží. 

𝑝1 = 𝑃(𝑋 = 1) = 𝑃(𝐴1) = 𝟎, 𝟔 

Zákazník navštíví dvě prodejny; v první zboží nemají, ve druhé ano. 

𝑝2 = 𝑃(𝑋 = 2) = 𝑃(𝐴̅1 ∩ 𝐴2) = 𝑃(𝐴̅1) ∙ 𝑃(𝐴2) = 0,4 ∙ 0,6 = 𝟎, 𝟐𝟒 

Zákazník navštíví tři prodejny; v prvních dvou neuspěje, ve třetí ano. 

𝑝3 = 𝑃(𝑋 = 3) = 𝑃(𝐴̅1) ∙ 𝑃(𝐴̅2) ∙ 𝑃(𝐴3) = 0,42 ∙ 0,6 = 𝟎, 𝟎𝟗𝟔 

Zákazník navštíví čtyři prodejny; v prvních třech neuspěje (bez ohledu na výsledek návštěvy 

čtvrté prodejny).   𝑝4 = 𝑃(𝑋 = 4) = 𝑃(𝐴̅1) ∙ 𝑃(𝐴̅2) ∙ 𝑃(𝐴̅3) = 0,43 = 𝟎, 𝟎𝟔𝟒 

∑ 𝑝𝑖

𝑛

𝑖=1

= 𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 = 0,6 + 0,24 + 0,096 + 0,064 = 1 

Tabulka rozdělení pravděpodobností 

Tato tabulka se také nazývá řada rozdělení a znázorňuje nám množinu možných variant 

realizací (variační řadu 𝑥𝑖) a konkrétní hodnoty výsledků uvedených realizací (odpovídající 

pravděpodobnost náhodné veličiny 𝑝𝑖). Výsledky realizace náhodné veličiny X počet 

navštívených prodejen jsou vyjádřeny v následující tabulce. 

𝒙𝒊 1 2 3 4 ∑ 

𝒑𝒊 0,6 0,24 0,096 0,064 1 

Graf 

Znázornění pravděpodobnostní funkce 𝑃(𝑥) pomocí bodového a sloupcového grafu. 

                    Bodový graf                    Sloupcový graf 
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Pokračování příkladu 3.3 

ad b) Kumulaci hodnot pravděpodobnosti náhodné veličiny budeme definovat pomocí 

distribuční funkce 𝑭(𝒙). 

Zákazník si koupí zboží v první prodejně. 

𝐹(1) = 𝑃(𝑋 ≤ 1) = 𝑃(𝑋 = 1) = 𝑃(1) = 0,6 

Zákazník si koupí zboží v první prodejně nanejvýše ve druhé prodejně. 

𝐹(2) = 𝑃(𝑋 ≤ 2) = 𝑃(1) + 𝑃(2) = 0,6 + 0,24 = 0,84 

Zákazník si koupí zboží v první prodejně, ve druhé prodejně a nanejvýš ve třetí prodejně. 

𝐹(3) = 𝑃(𝑋 ≤ 3) = 𝑃(1) + 𝑃(2) + 𝑃(3) = 0,6 + 0,24 + 0,096 = 0,936 

Zákazník si koupí zboží v první, ve druhé, ve třetí a nanejvýš ve čtvrté prodejně. 

𝐹(3) = 𝑃(𝑋 ≤ 4) = 𝑃(1) + 𝑃(2) + 𝑃(3) + 𝑃(4) = 0,6 + 0,24 + 0,096 + 0,064 = 1 

  Distribuční funkci zapisujeme následovně 

 

 

𝐹(𝑥) 

0 pro 𝑥 ∈ (−∞; 1) 

0,6 pro 𝑥 ∈ ⟨1; 2) 

0,84 pro 𝑥 ∈ ⟨2; 3) 

0,936 pro 𝑥 ∈ ⟨3; 4) 

1 pro 𝑥 ∈ ⟨4; ∞) 

Grafické znázornění distribuční funkce 𝐹(𝑥) a pravděpodobnostní funkce je na obrázcích 

3.2 a 3.3. 

3.1.2 Funkce rozdělení spojité náhodné veličiny 

Distribuční funkci 𝐹(𝑥) spojité náhodné veličiny nelze popsat pravděpodobnostní funkcí 

v určitém bodě. Spojité náhodné veličiny mohou nabývat všech hodnot z určitého intervalu,  

a proto grafem distribuční funkce spojité náhodné veličiny je spojitá křivka (příklad 3.3).  

U spojité náhodné veličiny pravděpodobnost roste spojitě s obsahem plochy.  

Rozdělení pravděpodobnosti spojité náhodné veličiny se určuje prostřednictvím funkce, 

kterou označujeme hustota rozdělení pravděpodobnosti. 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑋 ∈ (−∞, 𝑥⟩) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

−∞

 (3.5) 

Hustotu rozdělení pravděpodobnosti 𝑓(𝑥) získáme derivováním distribuční funkce. 

𝑓(𝑥) = 𝐹′(𝑥) =
𝑑

𝑑𝑥
𝐹(𝑥) (3.6) 

Funkční hodnota 𝐹(𝑥) spojité náhodné veličiny vyjadřuje obsah plochy z hustoty 𝑓(𝑡)  

od mínus nekonečna do hodnoty 𝑥. Hustota pravděpodobnosti nabývá nezáporných hodnot 
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𝑓(𝑥) ≥ 0; integrál hustoty pravděpodobnosti přes všechny hodnoty, kterých může náhodná 

veličina nabýt (celková plocha pod funkcí), je roven jedné: ∫ 𝑓(𝑥)𝑑𝑥 = 1
∞

−∞
. 

Příklad 3.4 

Průměrná čistá mzda zaměstnanců nejmenovaného národního koncernu je 42,7 tisíc Kč, se 

směrodatnou odchylkou 7,4 tisíce Kč. Kolik procent zaměstnanců má čistou mzdu 

v intervalu od 40 do 50 tisíc Kč?      

Mzda zaměstnanců – spojitá náhodná veličina, která se řídí normálním rozdělením. 

Řešení 

Pro výpočet pravděpodobnosti spojité náhodné veličiny 𝑋  použijeme vzorec odvozený ze 

vztahu 3.2: 𝑃(𝑎 < 𝑋 ≤ 𝑏) = = 𝑃(40 < 𝑋 ≤ 50) = 𝐹(50) − 𝐹(40) = 0,83805278 −

 0,35760614 = 0,48044664 = 48,04 % 

Distribuční funkce 𝑭(𝒙)        Hustota rozdělení 𝒇(𝒙) 

 

 

 

 

 

 

 

 

Hodnoty distribuční a kvantilové funkce jsou tabelovány z důvodů matematické náročnosti 

výpočtu.  

3.2 Kvantilová funkce  

Z distribuční funkce lze jednoznačně určit funkci kvantilovou. Kvantilová funkce náhodné 

veličiny je teoretická funkce, která je charakteristikou rozdělení náhodné veličiny 𝑋.  

U spojitých náhodných veličin, kde je distribuční funkce 𝐹(𝑥) oboustranně spojitá, je 

možné 𝑝-kvantil jednoznačně určit (vztah 3.7). Výsledkem není pravděpodobnost, ale číslo na 

reálné ose, které odpovídá určité pravděpodobnosti. 

𝑃[𝑋 ≤ 𝑄𝑥(𝑝)] = 𝐹[𝐹−1(𝑝)] = 𝛼, 𝑃[𝑋 ≥ 𝑄𝑥(𝑝)] = 1 − 𝑝 (3.7) 
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 Příklad 3.5 

Vycházíme z příkladu 3.3. Průměrná čistá mzda zaměstnanců nejmenovaného národního 

koncernu je 42,7 tisíc Kč se směrodatnou odchylkou 7,4 tisíce Kč. Jaká je čistá mzda 

prvních 20 % zaměstnanců3? 

Řešení 

Pro výpočet pravděpodobnosti spojité náhodné veličiny 𝑋 (mzda zaměstnanců) použijeme 

vztah 3.6:   𝑃[𝑋 ≤ 𝑄𝑥(0,2)] = 𝐹[𝐹−1(0,2)] =36,472 tisíc Kč. 

      Distribuční funkce 𝑭(𝒙) Kvantilová funkce 𝑸𝒙(𝒑) 

  

 

 

 

 

 

 

U diskrétních náhodných veličin, kde je distribuční funkce 𝐹(𝑥) schodovitá (po částech 

konstantní), není možné 𝑝-kvantil jednoznačně určit. 

𝑃[𝑋 < 𝑄𝑥(𝑝)] = 1 − 𝑃[𝑋 ≥ 𝑄𝑥(𝑝)] ≤ 𝑝, (3.8) 

kde limita zleva distribuční funkce v bodě 𝑄𝑥(𝑝) je ≤ 𝑝. 

Kvantilová funkce úzce souvisí s pojmem kvantil (viz kapitola Číselné charakteristiky 

náhodných veličin). 

3.3 Číselné charakteristiky náhodných veličin 

Distribuční funkce, pravděpodobnostní funkce a hustota pravděpodobnosti4 nám poskytují 

úplnou, ale ne na první pohled, přehlednou informaci o charakteru rozdělení náhodné veličiny. 

Z tohoto důvodu se k popisu tvaru rozdělení používají číselné charakteristiky, které nám 

umožňují shrnout informace o náhodné veličině do několika hodnot (čísel). Jedná se  

o charakteristiky (parametry), které nám poskytují souhrnnou informaci o chování náhodných 

veličin.  

Jejich konstrukce vychází ze dvou základních principů: momentového a kvantilového. 

 
3 Kvintil dělí statistický soubor na pět stejných dílů. 20 % prvků souboru má hodnoty menší (nebo rovné) 

hodnotě prvního kvintilu. 
4 Funkcionální charakteristiky 
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3.3.1 Momentové charakteristiky náhodných veličin 

Zavedení pojmu momenty umožnuje definovat nejdůležitějších statistické charakteristiky, které 

označujeme jako momentové charakteristiky. 

Jedná se o charakteristiky náhodné veličiny vystupující jako číselné proměnné, které jsou 

založené na mocninách a součinech hodnot pozorování.  

Obecný moment   moment okolo počátku náhodné veličiny X. 

Obecný moment k-tého řádu, který značíme  𝜇𝑘
′ (𝑋) = 𝐸(𝑋)𝑘, je definován vztahem: 

pro diskrétní NV 𝜇𝑘
′ (𝑋) = ∑ 𝑥𝑖

𝑘

∞

𝑖=1

∙ 𝑝𝑖 (3.9) 

pro spojitou NV 𝜇𝑘
′ (𝑋) = ∫ 𝑥𝑘

∞

−∞

∙ 𝑓(𝑥)𝑑𝑥 (3.10) 

   

Kde: 𝑘    ……. stupeň momentu k = 1, 2, 3…,   

 xi     ……. hodnoty náhodné veličiny X, pro i = 1, 2, ….., 

 𝑝𝑖   ……. pravděpodobnost, že X nabývá hodnoty xi, 

 𝑓(𝑥) ….. hustota pravděpodobnosti X. 

V teorii pravděpodobnosti je nejvíce používaný první obecný moment náhodné veličiny  

X (vztah 3.11; 3.12), který vyjadřuje nejčastěji používanou charakteristiku polohy neboli 

úrovně a který se nazývá střední hodnota náhodné veličiny  𝜇1
′ (𝑋) = 𝐸(𝑋) = 𝜇. První 

obecný moment udává střední hodnotu náhodné veličiny 𝐸(𝑋). 

Diskrétní NV k = 1 𝜇1
′ (𝑋) = ∑ 𝑥𝑖

𝑘∞
𝑖=1 ∙ 𝑝𝑖 = ∑ 𝑥𝑖

1∞
𝑖=1 ∙ 𝑝𝑖 =  ∑ 𝑥𝑖

∞
𝑖=1 ∙ 𝑝𝑖 = E(X) (3.11) 

 

Spojitá NV 

 

k = 1 
𝜇1

′ (𝑋) = ∫ 𝑥1

∞

−∞

∙ 𝑓(𝑥)𝑑𝑥 = 𝐸 (𝑋) 
 

(3.12) 

Definice obecného momentu je analogická s definicí centrálního momentu. Obecné 

momenty jsou ovšem vztaženy k počátku souřadného systému, zatímco centrální momenty jsou 

vycentrovány ke střední hodnotě (těžišti všech možných hodnot) náhodné veličiny. 

Centrální moment  moment okolo konstanty, kterou je první obecný moment. 
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Centrální moment k-tého řádu, který značíme  𝜇𝑘(𝑋) = 𝐸[𝑋 − 𝐸(𝑋)]𝑘, je definován 

vztahem: 

 

pro diskrétní NV 
𝜇𝑘(𝑋) = ∑[𝑥𝑖 − 𝐸(𝑋)]𝑘

∞

𝑖=1

∙ 𝑝𝑖 (3.13) 

 

pro spojitou NV 
𝜇𝑘(𝑋) = ∫ [𝑥 − 𝐸(𝑋)]𝑘

∞

−∞

∙ 𝑓(𝑥)𝑑𝑥 (3.14) 

Kde: 𝐸(𝑋)    ….. střední hodnota. 

Nejdůležitější charakteristikou z centrálních momentů je druhý centrální moment (vztah 

3.15; 3.16) náhodné veličiny, který se nazývá rozptyl (disperze)  𝜇2(𝑋) = 𝐷(𝑋) =  𝜎2. 

Diskrétní NV   

k = 2 
𝜇2(𝑋) = ∑[𝑥𝑖 − 𝐸(𝑋)]2

∞

𝑖=1

∙ 𝑝𝑖 = ∑ 𝑥𝑖
2 ∙ 𝑝𝑖 − 𝐸(𝑋)2

∞

𝑖=1

= 𝐷(𝑋) (3.15) 

Spojitá NV   

k = 2 𝜇2(𝑋) = ∫ [𝑥 − 𝐸(𝑋)]2∞

−∞
∙ 𝑓(𝑥)𝑑𝑥 = D(X) (3.16) 

 

Normovaný moment  moment, který je bezrozměrný a neměnný, vůči aditivní  

i multiplikativní konstantě. Při normování vycházíme z číselných charakteristik polohy  

a variability náhodné veličiny (X).  

Normovaný moment k-tého stupně  𝜇̅𝑘 náhodné veličiny X je určen vztahem: 

 
𝜇̅𝑘(𝑋) =

𝐸[𝑋 −  𝐸(𝑋)]𝑘

√[𝐷(𝑋)]
 (3.17) 

Kde: 𝐸(𝑋) ….. střední hodnota náhodné veličiny.  

 𝐷(𝑋) …. rozptyl náhodné veličiny.  

 

Normovaný moment je výchozím počtem pro charakteristiky šikmosti a špičatosti, které se 

využívají k porovnání průběhu posuzovaného rozdělení pravděpodobností s průběhem 

normovaného normálního rozdělení pravděpodobností N(0,1) více v kapitole Rozdělení 

spojitých náhodných veličin. Normování se také využívá při standardizaci hodnot náhodných 

veličin.  

Mezi základní vlastnosti níže uvedených číselných charakteristik náhodných veličin, které 

při svém výpočtu vycházejí z momentů, patří skutečnost, že všechny tyto charakteristiky jsou 

citlivé na extrémní hodnoty.  
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Střední hodnota náhodné veličiny 

Střední hodnota náhodné veličiny určuje střed rozdělení náhodné veličiny, kolem kterého 

kolísají pozorované hodnoty náhodné veličiny.  

Střední hodnota diskrétní náhodné veličiny (vztah 3.18) představuje těžiště soustavy všech 

hodnot náhodné veličiny, jejichž četnost je popsána pravděpodobnostní funkcí. Střední hodnota 

spojité náhodné veličiny (vztah 3.19) je pak těžištěm hmotné přímky, na níž je rozprostření 

všech možných hodnot náhodné veličiny popsáno hustotou pravděpodobností. 

Střední hodnota E(X)  

Diskrétní NV E(X) = ∑ 𝑥𝑖
∞
𝑖=1 ⋅ 𝑝𝑖          (3.18) 

Spojitá NV E(X) =  ∫ 𝑥 ⋅ 𝑓
+∞

−∞
(𝑥)𝑑𝑥 (3.19) 

Při mnohačetném opakování nezávislých náhodných pokusů, které jsou realizovány za 

stejných podmínek, je možné s velkou pravděpodobností očekávat, že mezi střední hodnotou 

náhodné veličiny X (teoretickou hodnotou) a aritmetickým průměrem (empirická hodnota) 

konkrétních hodnot x, které vycházejí z realizace pokusu, bude jen nepatrný rozdíl.  

Pro střední hodnotu mimo jiné platí: 

a) střední hodnota konstanty c je rovna této konstantě E(c) = c;                                 

b) E(cX) = cE(X); 

c) střední hodnota součtu nebo rozdílu dvou náhodných veličin je rovna:  

E(X ± Y) = E(X) ± E(Y); 

d) střední hodnota součinu dvou nezávislých náhodných veličin X a Y je rovna:  

E(X  Y) = E(X)  E(Y). 

Pro ucelený popis pravděpodobnostního rozdělení náhodné veličiny X potřebujeme znát 

nejen střední hodnotu 𝐸(𝑋) = 𝜇, ale také hodnotu variability D(X) = 2 hodnot kolem střední 

hodnoty. 

Variabilita náhodné veličiny 

Variabilita neboli proměnlivost hodnot náhodné veličiny je charakterizována rozptylem, který  

představuje druhý centrální moment a je definován jako hodnota kvadrátů odchylek od 

střední hodnoty a značí se 𝜇2(𝑋) = D(X) =2.  
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Rozptyl D(X)  

   Diskrétní NV D(X) = E[X – E(X)]2  = E(X2) – [E(X)]2 =∑ 𝑥𝑖
2∞

𝑖=1 ⋅ 𝑝𝑖 – [E(X)]2                                                                                                                                    (3.20) 

    Spojitá NV D(X) =  ∫ 𝑥2 ⋅ 𝑓
+∞

−∞
(𝑥)𝑑𝑥  – [E(X)]2 (3.21) 

Pro rozptyl mimo jiné platí: 

a) rozptyl konstanty c je roven nule, D(c) = c;                            

b) pro libovolnou konstantu c platí D(cX) = c2  D(X); 

c) rozptyl součtu dvou nezávislých náhodných veličin je roven: D(X + Y) = D(X) + D(Y); 

d) √𝐷(𝑋) =  √𝜎2 =  𝜎(𝑋)… směrodatná odchylka vyjadřuje variabilitu v původních 

jednotkách náhodné veličiny.   

Charakteristika šikmosti 

Šikmost (asymetrie) nám udává nesouměrnost rozložení četností náhodné veličiny X.  

Objektivní míra k určení asymetrie vychází z třetího normovaného centrálního momentu. 

Šikmost  𝝁̅𝟑(𝑿) 

 
𝜇̅3(𝑋) =

𝐸[𝑋 −  𝐸(𝑋)]3

√[𝐷(𝑋)]3
 (3.22) 

Charakteristika špičatosti 

Špičatost je číselná charakteristika náhodné veličiny X, která souvisí s mírou koncentrace 

rozložení četností hodnot náhodné veličiny. Míra špičatosti vychází ze čtvrtého normovaného 

centrálního momentu. 

Špičatost 𝝁̅𝟒(𝑿) 

 𝜇̅4(𝑋) =
𝐸[𝑋 −  𝐸(𝑋)]4

√[𝐷(𝑋)]4
 (3.23) 

Příklad 3.6 

Dlouhodobým pozorováním bylo zjištěno, že pravděpodobnost, že studenti půjčí 

v univerzitní knihovně jednu knihu, je 0,22, že si půjčí dvě knihy je 0,25, tři knihy si půjčí 

0,30, čtyři knihy si odnese 0,13 studentů. Maximální počet knih, které si studenti mohou 

vypůjčit, je 5 kusů.  

a) Vypočítejte, jaká je pravděpodobnost, že student si půjčí právě 5 knih. 

b)  Stanovte pravděpodobnostní funkci P(x) a distribuční funkci F(x). 

c)  Vypočítejte: střední hodnotu, rozptyl a směrodatnou odchylku. 
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Řešení příkladu 3.6 

Náhodná veličina X …počet vypůjčených knih je nezávislá diskrétní náhodná veličina. 

a) Hodnoty realizace náhodné veličiny X pravděpodobnostní a distribuční funkce  

xi 1 2 3 4 5 

P(x) 0,22 0,25 0,30 0,13 0,10 

F(x) 0,22 0,47 0,77 0,90 1 

 

b) E(X) = ∑ 𝑥𝑖
𝑛
𝑖=1 ⋅ 𝑝𝑖  = 1 ∙ 0,22 + 2 ∙ 0,25 + 3 ∙ 0,30 + 4 ∙ 0,13 + 5 ∙ 0,10 = 2,64   

D(X) = ∑ 𝑥𝑖
2𝑛

𝑖=1 ⋅ 𝑝𝑖 – [E(X)]2 = 12 ∙ 0,12 + 22 ∙ 0,25 + 32 ∙ 0,30 + 42 ∙ 0,13 + 52 ∙ 0,10 –  

(2,64)2  = (0,12 + 1+ 2,7 + 2,08 + 2,5) – 6,9696 = 1,1304 

3.3.2 Normovaná náhodná veličina 

Normováním náhodné veličiny nazýváme takovou operaci, která spočívá ve zmenšení hodnot 

náhodné veličiny o první obecný moment (střední hodnotu) a dělením druhou odmocninou 

druhého centrálního momentu (směrodatnou odchylkou).  

Normovanou (standardizovanou) náhodnou veličinu značíme U a definujeme ji vztahem 

 U =  
𝑋−𝐸(𝑋)

√𝐷(𝑋)
 (3.24) 

Pro normovanou náhodnou veličinu U platí, že střední hodnota je rovna nule  

E(U) = 0 a rozptyl jedné D(U) = 1. Z uvedeného vyplývá, že u normovaných náhodných veličin 

nemá smysl rozlišovat obecné a centrální momenty. Obecně tedy nazýváme momenty 

normované náhodné veličiny normované momenty. Střední hodnota normovaného znaku je 

vždy rovna nule a směrodatná odchylka hodnotě jedna. 

Všechny uvedené momentové charakteristiky vykazují menší citlivost vůči extrémním 

hodnotám, proto dále uvádíme charakteristiky, které označujeme jako robustní a jejich výpočet 

je založen na kvantilech. 

3.3.3 Kvantilové charakteristiky náhodných veličin 

Kvantily 𝑄𝑝 dělí hodnoty náhodné veličiny na části. Kvantily jsou inverzní funkcí k distribuční 

funkci a jsou určeny pořadím ve vzestupně uspořádaném souboru hodnot. 

Je to taková hodnota náhodné veličiny X, která rozděluje uspořádaný soubor hodnot určité 

statistické proměnné na dvě části – jedna obsahuje ty hodnoty, které jsou menší nebo rovny 𝑝-
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procentnímu kvantilu, druhá část obsahuje hodnoty, které jsou větší nebo rovny 𝑝-procentnímu 

kvantilu. Jestliže p  (0, 1), pak je číslo Qp (X), které splňuje následující vlastnosti: 

 P [X ≥ Qp] ≥ 1 – p (3.25) 

 P [X ≤ Qp] ≥ p (3.26) 

p-kvantil dělí plochu pod grafem hustoty pravděpodobnosti v poměru p: (1 – p ).  

Obrázek 3.4: Grafické znázornění kvantilů 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kvantily pro některé význačné hodnoty jsou označovány jmény a pro nejdůležitější 

rozdělení jsou hodnoty základních kvantilů tabelovány. Kvantil je bod (obr. 3.4), který 

rozděluje prostor hodnot náhodné veličiny v určitém pravděpodobnostním poměru.  Volba 

kvantilů závisí na tom, jak podrobné informace o rozdělení pravděpodobností jsou požadovány. 

Nejčastěji používané kvantily 

Medián Q0,5 rozdělující statistický soubor na dvě stejně početné množiny. U symetrického 

rozdělení je medián roven střední hodnotě, pokud střední hodnota existuje. Jeho hodnota je 

přirozeně interpretovatelná. Kvartil Q0,25 (dolní kvartil), Q0,5 (medián), Q0,75 (horní kvartil) 

rozdělující hodnoty znaku na čtvrtiny. Kvintil dělí statistický soubor na pět stejných dílů. 20 % 

prvků souboru má hodnoty menší (nebo rovné) hodnotě prvního kvintilu, 80 % hodnoty větší 

(nebo rovné). Decil Qp/10 dělí soubor na desetiny. Percentil Qp/100 dělí soubor na setiny. 

Kvantily jsou považovány za důležitý prostředek popisu celého pravděpodobnostního 

rozdělení a jejich znalost umožňuje konstruovat intervaly, do nichž hodnota náhodné veličiny 

padne s předem zvolenou pravděpodobností více viz kapitola Rozdělení spojitých náhodných 

veličin. 
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Shrnutí kapitoly 

Náhodná veličina je proměnná, která nabývá různých hodnot v závislosti na náhodě. Náhodná 

veličina je reálné číslo, které je jednoznačně určeno výsledkem náhodného pokusu.                                                                              

Diskrétní náhodná veličina 𝑋 nabývá od sebe vzájemně oddělené hodnoty. 

Spojitá náhodná veličina 𝑋 nabývá všech hodnot z konečného či nekonečného intervalu. 

Zákon rozdělení náhodné veličiny je pravidlo, které každé hodnotě nebo každému 

intervalu hodnot přiřazuje pravděpodobnost, že náhodná veličina nabude této hodnoty nebo 

hodnoty z tohoto intervalu. 

Diskrétní náhodná veličina Spojitá náhodná veličina 

Distribuční funkce 𝑭(𝒙) Distribuční funkce 𝑭(𝒙) 

Pravděpodobnostní funkce P (𝒙) Hustota rozdělení pravděpodobnosti 𝒇(𝒙) 

Číselné charakteristiky poskytují souhrnnou informaci o chování náhodných veličin.  

Jejich konstrukce vychází ze dvou základních principů: momentového a kvantilového. 

Střední hodnota náhodné veličiny  𝜇1
′ (𝑋) = 𝐸(𝑋) = 𝜇. 

Rozptyl neboli variabilita náhodné veličiny  𝜇2(𝑋) = D(X) =2. 

Šikmost udává nesouměrnost rozložení četností náhodné veličiny  𝜇̅3(𝑋). 

Špičatost je charakteristika míry koncentrace rozložení četností náhodné veličiny  𝜇̅4(𝑋). 

Normovaná náhodná veličina  střední hodnota normovaného znaku je vždy rovna nule  

a směrodatná odchylka hodnotě jedna 𝑁 (0; 1). 

Kvantily 𝑄𝑝 dělí hodnoty náhodné veličiny na části. Kvantilové charakteristiky jsou 

odolnější vůči extrémním hodnotám (robustnost). 
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3 Kontrolní otázky 

1. Co je to náhodná veličina a jaké jsou její základní vlastnosti?  

2. Jakým způsobem se obvykle označuje náhodná veličina a její konkrétní hodnoty?  

3. Vysvětlete rozdíl mezi diskrétní a spojitou náhodnou veličinou. Uveďte příklady pro 

každý typ.  

4. Proč je potřeba výsledky náhodných pokusů kvantifikovat neboli číselně vyjádřit?  

5. Jakými způsoby můžeme ve statistice charakterizovat zákon rozdělení náhodné 

veličiny?  

6. Jaké jsou hlavní vlastnosti distribuční funkce?  

7. Jaký má tvar distribuční funkce u diskrétní náhodné veličiny? Co znamenají skoky na 

grafu? 

8. Jaký je tvar distribuční funkce u spojité náhodné veličiny a v čem se liší od diskrétní?  

9. Co je to pravděpodobnostní funkce 𝑃(𝑥) a pro jaký typ náhodné veličiny se používá?  

10. Co je to hustota rozdělení pravděpodobnosti 𝑓(𝑥) a pro jaký typ náhodné veličiny se 

používá? Jaký je její vztah k distribuční funkci?  

11. Co je to kvantilová funkce a jaký je její vztah k distribuční funkci?  

12. Jaký je účel číselných charakteristik náhodných veličin?  

13. Definujte střední hodnotu náhodné veličiny a rozptyl náhodné veličiny. Uveďte jejich 

značení. 

14. Jaké jsou základní vlastnosti střední hodnoty náhodné veličiny?  

15. Jsou momentové charakteristiky citlivé na extrémní hodnoty? 

16. Jaké jsou nejčastěji používané typy kvantilů a jak dělí statistický soubor?  

17. Vysvětlete pojem robustnost kvantilových charakteristik. Proč se označují za robustní? 
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4 PRAVDĚPODOBNOSTNÍ ROZDĚLENÍ 

Rozdělení náhodné veličiny je pravděpodobnostní model chování náhodné veličiny v cílové 

populaci. Pravděpodobností rozdělení vychází ze zákona rozdělení náhodné veličiny (viz 

kapitola Náhodná veličina). 

V programu IBM SPSS Statistics se pro výpočet pravděpodobnosti a kritických hodnot 

rozdělení (kvantilů) využívají následující funkce: 

CDF (Cumulative Distribution Function) – Kumulativní distribuční funkce  

Pro diskrétní rozdělení: vypočítá pravděpodobnost, že náhodná veličina s daným rozložením  

a určenými parametry nabude hodnoty, která se rovná anebo je menší než zadaná hodnota 

argumentu  𝑃(𝑋 ≤  𝑥).  

Pro spojité rozdělení: vypočítá pravděpodobnost, že náhodná veličina s daným rozložením  

a určenými parametry nabude hodnoty menší než zadaná hodnota argumentu  𝑃(𝑋 <  𝑥).  

PDF (Probability Density Function) – Funkce hustoty pravděpodobnosti  

Pro diskrétní rozdělení: Vypočítá pravděpodobnost, že náhodná veličina 𝑋 nabude přesně 

hodnoty 𝑥  𝑃(𝑋 =  𝑥). 

Pro spojité rozdělení: pravděpodobnost libovolné konkrétní hodnoty u spojitého rozdělení  

je rovna 0! Více v kapitole 3.1.2 – Paradox nulové pravděpodobnosti. 

IDF (Inverse Distribution Function) – Kvantilová funkce  

Pro spojité rozdělení: vypočítá hodnotu kvantilu, který odděluje 𝑃 procent nejnižších hodnot 

od zbývajících hodnot. 

4.1 Pravděpodobnostní rozdělení diskrétních náhodných veličin 

Zákon rozdělení náhodné veličiny neboli teoretické rozdělení budeme charakterizovat pomocí: 

Matematické funkce →  distribuční funkce F(x) a pravděpodobnostní funkce P(x). 

Číselných charakteristik → střední hodnoty E(X) a rozptylu D(X). 

Diskrétní rozdělení má konečný nebo spočetný počet realizací. Existuje mnoho typů 

rozdělení diskrétních náhodných veličin. V následujícím textu budou uvedeny základní 

poznatky o nejběžnějších rozděleních využívaných ve statistice. 
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4.1.1 Alternativní rozdělení 

Náhodná veličina X, která představuje počet nastoupení sledovaného jevu A při realizaci 

jednoho pokusu, který se neopakuje (𝒏 = 𝟏) a který má jen dva výsledky {𝟎; 𝟏}. Jestliže jev  

A nastane (úspěch) přiřadíme náhodné veličině hodnotu 𝑝, jestliže jev A nenastane (neúspěch) 

přiřadíme ji 1 − 𝑝.   

Označení 

 𝑋~𝐴(𝑝)  

Pravděpodobnostní funkce Distribuční funkce  

𝑃(𝑥) = 𝑝𝑥(1 − 𝑝)1−𝑥  
𝐹(𝑥) = {

0
1
1

 −
𝑥

𝑝 0

𝑥

 <
 ≤
 ≥

 0;
𝑥
 1.

< 1; 
(4.1; 4.2) 

Kde: 𝑥 = 0, 1;  

 𝑝 ….. pravděpodobnost úspěchu pro 𝑝 ∈ (0; 1).  

Číselné charakteristiky   

Střední hodnota 𝐸(𝑋) =  𝑝 (4.3) 

Rozptyl 𝐷(𝑋) =  𝑝 ∙ (1 − 𝑝) (4.4) 

Příklad 4.1 

Dlouhodobým zjišťováním se odhaduje pravděpodobnost úspěchu obchodní akce  

0,7 a pravděpodobnost neúspěchu této akce je 0,3. Vypočítejte střední hodnotu 𝐸(𝑋)  

a rozptyl 𝐷(𝑋). 

Řešení 

Možnými hodnotami veličiny X jsou 0 (neúspěch) a 1 (úspěch), přičemž pravděpodobnosti 

úspěchu obchodní akce je 0,7. 

Náhodná veličina  𝑋~𝐴(0,7)  

Střední hodnota 𝐸(𝑋) =  𝑝 = 0,7 

Rozptyl 𝐷(𝑋) =  𝑝 ∙ (1 − 𝑝) = 0,7 ∙ 0,3 = 0,21 

4.1.2 Geometrické rozdělení 

Náhodná veličina 𝑋 udává celkový počet neúspěchů, které v nekonečné posloupnosti 

opakovaných (n-krát) nezávislých pokusů předcházejí prvnímu úspěšnému pokusu nastolení 

sledovaného jevu A. Pravděpodobnost úspěchu při každém opakování pokusu je  

𝑝  a pravděpodobnost neúspěchu je při každém z pokusu 1 − 𝑝. Náhodná veličina může mít 

v jednom náhodném pokusu jen dva výsledky 𝑿 = {𝟎, 𝟏} 
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Označení 

 𝑋~𝐺𝑒(𝑝) 

Pravděpodobnostní funkce Distribuční funkce  

𝑃(𝑥) = 𝑝(1 − 𝑝)𝑥  𝐹(𝑥) = {

0

∑ 𝑝(1 − 𝑝)𝑖   

0≤𝑖≤𝑥

𝑥 < 0;
0 ≤ 𝑥.

 (4.5; 4.6) 

Kde: 𝑥 = 0, 1, 2,  ….. , 𝑛 ….. počet neúspěšných výsledků pokusů;   

 𝑝 ….. pravděpodobnost úspěchu.  

Číselné charakteristiky   

Střední hodnota 
𝐸(𝑋) =  

1 − 𝑝

𝑝
 (4.7) 

Rozptyl 
𝐷(𝑋) =  

1 − 𝑝

𝑝2
 (4.8) 

Geometrické rozdělení vychází ze stejného předpokladu jako rozdělení alternativní. Náhodný 

pokusu má vždy jen dva výsledky úspěch/neúspěch. Geometrické rozdělení počítá 

pravděpodobnost počtu neúspěšných výsledků náhodného pokusu, které předcházejí 

prvnímu úspěšnému pokusu o nastoupení jevu A.  

 

Příklad 4.2 

Studenti v rámci předmětu Finanční a pojistná matematika píšou 5 průběžných testů, které 

jsou na sobě nezávislé. Hodnocení testů je označeno znaménky „+“, když student test napsal 

a „–“, když student test nenapsal. Pravděpodobnost, že student test úspěšně napíše, je 0,6.  

Vypočítejte, jaká je pravděpodobnost, že student úspěšně napíše až třetí test?  Následně 

střední hodnotu 𝐸(𝑋) a rozptyl 𝐷(𝑋). 

  Řešení 

Náhodná veličina  𝑋~𝐺𝑒(0,6)  

Pravděpodobnost 𝑃(𝑥) = 𝑝(1 − 𝑝)𝑥 = 𝑃(𝑋 = 2) = 0,6(1 − 0,6)2 = 0,09 

Střední hodnota 
𝐸(𝑋) =  

1 − 𝑝

𝑝
=  

1 − 0,6

0,6
= 25,04166̅  ≅ 0,666̅ 

Rozptyl 
𝐷(𝑋) =  

1 − 𝑝

𝑝2
=

1 − 0,6

0,62
= 1,111̅ 
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Pokračování příkladu 4.2 

SPSS 
Transform → Compute Variable → Function group PDF  Noncentral PDF → 

Functions and Special Variable Pdf. Geom            

 

POZOR! Datová matice při výpočtu v SPSS musí obsahovat proměnnou, jinak je 

kalkulačka nedostupná! Při zápisu hodnot určených k výpočtu pravděpodobnosti se používá 

desetinná tečka. 

4.1.3 Binomické rozdělení 

Binomickým rozdělením se řídí rozdělení diskrétní náhodné veličiny v případech, kdy 

nezávislý náhodný pokus opakujeme vícekrát (n-krát), přičemž pravděpodobnost p výskytu 

náhodného jevu A je ve všech pokusech stejná (konstantní). Jedná se o modely založené na 

náhodný výběr s vracením prvků. Náhodná veličina může mít v jednom náhodném pokusu jen 

dva možné výsledky úspěch/neúspěch {𝟎, 𝟏}.  

Z uvedeného vyplývá, že binomické rozdělení počítá pravděpodobnost počtu úspěšných 

výsledků nastoupení sledovaného jevu 𝐴 při opakovaných nezávislých pokusech.  

Označení 

 𝑋~𝐵𝑖(𝑛, 𝑝) 

Pravděpodobnostní funkce Distribuční funkce  

𝑃(𝑥) = (
𝑛
𝑥

) 𝑝𝑥(1 − 𝑝 )𝑛−𝑥 

𝐹(𝑥) = {

0

∑ (
𝑛
𝑖

)

0≤𝑖≤𝑥

𝑝𝑖(1 − 𝑝)𝑛−𝑖

1

   
𝑥
0
𝑥

 
<
≤
≥

 0;
𝑥
𝑛.

< 𝑛; (4.9; 4.10) 

Kde: 𝑥 = 0, 1, … , 𝑛 ….. počet úspěšných výsledků pokusu;  

 𝑝 ….. pravděpodobnost úspěchu v jednom pokusu;  

 𝑛 ….. celkový počet pokusů.  

 

Číselné charakteristiky   

Střední hodnota 𝐸(𝑋) =  𝑛𝑝 (4.11) 

Rozptyl 𝐷(𝑋) =  𝑛𝑝(1 − 𝑝) (4.12) 
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Příklad 4.3 

Student uspěje u testu ze statistiky, jestliže správně odpoví nejméně na 8 otázek z 10. Každá 

otázka má 4 možné odpovědi, z nichž jediná je správná.  Vypočítejte:  

a) S jakou pravděpodobností student zodpoví právě 6 z 10 otázek správně, když zvolí 

odpovědi náhodně?  

b) S jakou pravděpodobností student uspěje u testu, je-li zcela nepřipraven (odpovědi volí 

náhodně)? 

c) Kolik otázek v průměru student zodpoví správně, bude-li odpovídat na otázky 

náhodně? 

Řešení  

Náhodná veličina X představuje počet otázek, u kterých bude zaškrtnuta správná odpověď 

z celkového počtu 10 otázek.  Náhodná veličina X má binomické rozdělení a parametry  

𝑛 = 10; 𝑝 = 0,25 (1 otázka 4 možnosti odpovědi ¼)   

Náhodná veličina 𝑋~𝐵𝑖(10; 0,25) 

a) 𝑃(𝑋 = 6) = (
10
6

) 0,256(1 − 0,25 )10−6 = 210 ∙ 0,256(0,75 )4 = 0,016 

 
𝐾 (𝑛, 𝑘) =  (

𝑛
𝑘

) =
𝑛!

𝑘! (𝑛 − 𝑘)!
= (

10
6

) =  
10!

6! 4!
= 210 

b) 𝑃(𝑋 ≥ 8) = 1 − 𝑃(𝑋 < 7) = 1 − [𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) + ⋯ + 𝑃(𝑋 = 7] =  

= 0,0004158 

c) 
𝐸(𝑋) = 𝑛𝑝 = 10 ∙ 0,25 = 𝟐, 𝟓 

SPSS   Transform → Compute Variable →  

a) Function group PDF  Noncentral PDF → Functions and Special Variable Pdf. 

Binom             

 

 

b) Function group CDF  Noncentral CDF →Functions and Special Variable Cdf. 

Binom        
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4.1.4 Hypergeometrické rozdělení 

Hypergeometrické rozdělení vychází z n-krát opakování náhodného pokusu, kde 

pravděpodobnost nastoupení sledovaného jevu je závislá na výsledcích předcházejících pokusů 

(opakované náhodné pokusy jsou závislé). Náhodná veličina může mít v jednom pokusu jen 

dva výsledky {𝟎, 𝟏}. Hypergeometrické rozdělení je základním pravděpodobnostním 

rozdělením náhodné veličiny, které je založeno na náhodném výběru bez vracení.  

Definice pravděpodobnostní funkce hypergeometrického rozdělení vychází z klasické 

definice pravděpodobnosti: počet příznivých možností ku počtu všech možností. 

Označení 

 𝑋~𝐻𝑔(𝑁, 𝑀, 𝑛)  

Pravděpodobnostní funkce Distribuční funkce  

𝑃(𝑥) =
(𝑀

𝑥
)(𝑁−𝑀

𝑛−𝑥
)

(𝑁
𝑛

)
 𝐹(𝑥) = ∑

( 𝑀
𝑥

) ( 𝑁−𝑀
𝑛−𝑥

)

(𝑁
𝑛

)
𝑚𝑎𝑥≤𝑥≤𝑚𝑖𝑛

 

 

(4.13; 4.14) 

Kde: 𝑥 = 𝑚𝑎𝑥{0, 𝑛 − (𝑁 − 𝑀)}, … , 𝑚𝑖𝑛{𝑛, 𝑀} ….. počet prvků se sledovanou vlastností, 

 𝑁 ….. celkový počet prvků,  

 𝑀 ….. celkový počet prvků se sledovanou vlastností,  

 𝑛 …..  počet náhodně vybraných prvků z celkového počtu N.  

Číselné charakteristiky   

Střední hodnota 
𝐸(𝑋) =  𝑛

𝑀

𝑁
 (4.15) 

Rozptyl 
𝐷(𝑋) =   𝑛

𝑀

𝑁
(1 −

𝑀

𝑁
)

𝑁 − 𝑛

𝑁 − 1
 (4.16) 

Limitním případem hypergeometrického rozdělení náhodných veličin je rozdělení 

binomické, pro 𝑥 → ∞ a 
𝑀

𝑁
 → 0.  Pro velká N můžeme zanedbat rozdíl mezi náhodným 

výběrem bez vracení prvků a výběrem s vracením prvků (v praxi je možné rozhodnout se podle 

hodnoty tzv. výběrového poměru (𝑛/𝑁). Je-li tento poměr menší než 0,05, lze 

hypergeometrické rozdělení aproximovat rozdělením binomickým.  
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Příklad 4.4 

Vysoká škola „odAdoZ“ si objednala 180 zářivkových trubic k osvětlení nových 

počítačových učeben.  Při přejímce výrobků bylo z dodávky náhodně vybráno bez vracení 

25 trubic, u kterých byla provedena kontrola funkčnosti. Z dohody mezi prodejcem  

a vysokou školou plyne, že dodávka zářivkových trubic bude přijata a zaplacena jen 

v případě, že mezi kontrolovanými výrobky budou nanejvýš tři nefunkční. 

Vypočítejte, jaká je pravděpodobnost, že dodávka bude přijata, jestliže prodejce 

předpokládá, že 15 % zářivkových trubic může vykazovat známky poškození a nebýt tedy 

plně funkčních. 

Řešení 

Náhodná veličina  𝑿~𝑯𝒈(𝟏𝟖𝟎, 𝑴, 𝒏) 

𝑥 = 3 

𝑀→ 27 → 15 % poškozených 

𝑁 → 180 → celkový počet  

𝑛 → 25 počet náhodně vybraných ke kontrole 

𝑃(𝑋 = 3) =
(𝑀

𝑥 )(𝑁−𝑀
𝑛−𝑥 )

(𝑁
𝑛)

=  
(27

3 )(180−27
25−3 )

(180
25 )

 = 0,22789  

SPSS 
Transform → Compute Variable → Function group PDF  Noncentral PDF → 

Functions and Special Variable Pdf. Hyper             

                  

 

 

4.1.5 Poissonovo rozdělení 

Poissonovo rozdělení patří k jednomu z nejdůležitějších rozdělení náhodných veličin v teorii 

pravděpodobnosti. Popisuje výskyt n-náhodných událostí (počet událostí – diskrétní NV) 

v jednotce času, objemu nebo plochy, za předpokladu, že události jsou na sobě vzájemně 

nezávislé a dochází k nim náhodně a jednotlivě (počet volání na telefonní ústřednu v určitém 

časovém intervalu, počet poruch stroje za dobu 𝑡 apod.).  

Náhodná veličina 𝑋 může nabývat pouze nezáporných celočíselných hodnot. Náhodná 

veličina může mít v jednom náhodném pokusu jen dva výsledky {𝟎, 𝟏}. 
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Označení 

 𝑋~ 𝑃𝑜(𝜆) 

Pravděpodobnostní funkce Distribuční funkce  

𝑃(𝑥) =
𝜆𝑥

𝑥!
𝑒−𝜆 𝐹(𝑥) = ∑

𝜆𝑥

𝑥!
𝑜≤𝑥

𝑒−𝜆 (4.17; 4.18) 

Kde: 𝑥 = 0, 1, …. počet výskytu událostí, 

 𝜆 …………. průměrný počet událostí na jednotku času, objemu nebo prostoru. 

Číselné charakteristiky   

Střední hodnota 𝐸(𝑋) =  𝜆 (4.19) 

Rozptyl 𝐷(𝑋) =  𝜆 (4.20) 

Poissonovo rozdělení je limitním případem binomického rozdělení. Používáme ho  

v případě, že máme větší počet událostí 𝑛 → ∞ a malou pravděpodobnost výskytu události 

v jednotce času, objemu nebo plochy 𝑝 → 0. Poissonovo rozdělení dobře aproximuje 

binomické za podmínek 𝑛 > 30 a 𝑝 < 0,1  𝑃𝑜 (𝜆) ≈ 𝐵𝑖 (𝑛, 𝑝) → 𝜆 = 𝑛𝑝. 

 

   Příklad 4.5 

Na revize zápočtových testů náhodně chodí „v průměru“ 6 studentů za hodinu. Vypočítejte, 

s jakou pravděpodobností přijdou na konzultaci během prvních 30 minut alespoň 2 studenti. 

Řešení 

Náhodná veličina 𝑋 → počet studentů, kteří přijdou během prvních 30 minut. V „průměru“ 

přijdou na konzultaci 3 studenti za půl hodiny. 

𝑋~𝑃𝑜(3)  

𝑃(𝑋 ≥ 2) = 1 − [𝑃(𝑋 = 0) + 𝑃(𝑋 = 1)] = 1 − [
30

0!
𝑒−3 +

31

1!
𝑒−3] = 0,8008 

 

SPSS 

Transform → Compute Variable → Function group CDF  Noncentral CDF → 

Functions and Special Variable Cdf. Poisson              
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Příklad 4.6 

Na pult centrální ochrany je napojeno 50 subjektů. Pravděpodobnost, že během hodiny 

zavolá všech 50 subjektů, je 0,01. Ze zkušenosti víme, že střední počet subjektů, kteří během  

1 hodiny zavolají na pult centrální ochrany, je 𝐸(𝑋) =  0,5.  Poissonovo rozdělení v tomto 

případě aproximuje binomické rozdělení parametr, 𝜆 vypočteme ze vztahu  𝜆 = 𝑛𝑝. 

Vypočítejte: 

a) Jaká je pravděpodobnost, že během hodiny zavolají dva klienti? 

b) Jaká je pravděpodobnost, že během hodiny nezavolá žádný klient? 

Řešení 

Náhodná veličina 𝑋 → počet klientů, kteří během hodiny zavolají na pult centrální ochrany. 

Náhodná veličina  𝑋~𝑃𝑜(0,5)  

a) 𝑃(𝑋 = 2) =
0,52

2!
𝑒−0,5 = 0,076 

b) 𝑃(𝑋 = 0) =
0,50

0!
𝑒−0,5 =  0,607 

SPSS Transform → Compute Variable →  

a) Function group PDF  Noncentral PDF → Functions and Special Variable Pdf. 

Poisson             

 

b) Function group PDF  Noncentral PDF →Functions and Special Variable Pdf. 

Poisson        

 

      

4.2 Pravděpodobnostní rozdělení spojitých náhodných veličin 

Rozdělení pravděpodobnosti spojité náhodné veličiny, které představuje model chování 

náhodné veličiny v cílové populaci, charakterizujeme pomocí: 

a) Matematické funkce → v tomto případě pomocí distribuční funkce F(x) a hustoty 

pravděpodobnosti 𝑓(𝑥). 

b) Číselných charakteristik → střední hodnoty E(X) a rozptylu D(X). 

Pro popis spojitých náhodných veličin, které jsou předmětem statistických analýz, nejčastěji 

používáme níže uvedené typy rozdělení náhodné veličiny. 
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4.2.1 Normální (Gausovo) rozdělení 

Normální rozdělení je nejčastěji se vyskytující pravděpodobnostní model rozdělení spojité 

náhodné veličiny 𝑋. Toto rozdělení je velmi důležité, neboť je klíčovým předpokladem pro 

použití celé řady základních statistických testů a modelů (modelování náhodných chyb – chyby 

měření, které jsou způsobeny velkým množstvím neznámých a vzájemně nezávislých vlivů).   

Normální rozdělení má dva parametry střední hodnotu 𝜇, charakterizující polohu rozdělení,  

a rozptyl 𝜎2, který charakterizuje proměnlivost hodnot náhodné veličiny kolem střední hodnoty. 

Označení 

𝑋~𝑁(𝜇,  𝜎2)  

Pravděpodobnostní funkce hustoty  Distribuční funkce  

𝑓(𝑥) =
1

√2𝜋 ∙ 𝜎2
 ∙  𝑒−

(𝑥 − 𝜇)2

2𝜎2
 𝐹(𝑥) = ∫ 𝑓(𝑥)

𝑥

−∞

𝑑𝑥 (4.21; 4.22) 

Kde: 𝑥 ∈ (−∞;  ∞),   

 𝜋 ….. matematická konstanta (Ludolfovo číslo),  

 𝜇 ….. střední hodnota,  

 𝜎2…. rozptyl.  

 

Číselné charakteristiky   

Střední hodnota 𝐸(𝑋) =  𝜇 (4.23) 

Rozptyl 𝐷(𝑋) =  𝜎2 (4.24) 

Hodnoty náhodné veličiny, které pocházejí z normálního rozdělení se symetricky 

rozprostírají kolem střední hodnoty. Střední hodnota 𝐸(𝑋) → parametr 𝜇 je zároveň mediánem 

(50% kvantilem) i modem normálního rozdělení. Normální rozdělení je vhodným 

pravděpodobnostním modelem tehdy, jestliže při opakovaném měření téže náhodné veličiny za 

stejných podmínek způsobuje množství nezávislých náhodných vlivů kolísání náhodné veličiny 

kolem skutečné hodnoty. Kolísání náhodných vlivů je vyjádřeno směrodatnou odchylkou 

𝜎 > 0, která nám udává šířku křivky v inflexním bodě (𝜇 ± 𝜎).  

Normální rozdělení má tvar zvonovité křivky (obr. 4.1), která se nazývá Gaussova křivka. 

Tvar hustoty pravděpodobnosti nabývá svého maxima v bodě 𝑥 = 𝜇 a při 𝑥 →  ±∞ se limitně 

přibližuje k ose 𝑥. 
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Obrázek 4.1: Hustota rozdělení pravděpodobnosti normálního rozdělení NV 

 

 

 

 

 

 

 

 

 

 

V případě, že náhodná veličina 𝑋 má normálního rozdělení 𝑁(𝜇,  𝜎2), můžeme vyčíslit 

procento pozorování, která by se měla realizovat v rozmezí ± x-násobku směrodatné odchylky 

𝜎 od střední hodnoty 𝜇.  

Pravděpodobnostní intervaly náhodné veličiny kolem střední hodnoty:  

▪ (𝜇 − 𝜎, 𝜇 + 𝜎) s pravděpodobností 68,27 %,   

▪ (𝜇 − 2𝜎, 𝜇 + 2𝜎) s pravděpodobností 95,45 %,  

▪ (𝜇 − 3𝜎, 𝜇 + 3𝜎) s pravděpodobností 99,73 %.  

Pravděpodobnost realizace náhodné veličiny s normálním rozdělením uvnitř intervalu 

𝜇 ± 3𝜎 je 99,73 %. Tato skutečnost je označována jako pravidlo ± 3 sigma. Pravidlo lze použít 

pro vizuální ověření normality rozložení sledované náhodné veličiny a pro identifikaci 

odlehlých hodnot.  Význam normálního rozdělení spočívá v možnosti aproximovat (nahradit) 

řadu jiných rozdělení náhodných veličin.  Toto je možné při dodržení určitých podmínek, 

nejdůležitější je dostatečně velký počet sledovaných náhodných veličin. 

4.2.2 Normované normální rozdělení 

Speciálním typem normálního rozdělení je normované (standardizované) normální rozdělení 

s nulovou střední hodnotou 𝜇 = 0 a jednotkových rozptylem 𝜎2 = 1. Vztah pro přepočet 

(standardizaci) normální náhodné veličiny na veličinu normovanou je: 

𝑈 =  
𝑋 − 𝜇

𝜎
 (4.25) 
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Standardizace nám umožní převést hodnoty 𝑥 náhodné veličiny 𝑋, které jsou vyjádřeny 

v jednotkách měřené veličiny, na normované normální veličiny 𝑈, kde jednotlivé hodnoty  

𝑢 jsou vyjádřeny ve směrodatných odchylkách.  

Označení 

 𝑋~𝑈~𝑁(0; 1)  

Pravděpodobnostní funkce hustoty  Distribuční funkce  

𝑓(𝑥; 0,1) =
1

√2𝜋
 ∙  𝑒−

𝑥2

2  𝐹(𝑥) = ∫ 𝑓(𝑥)
𝑥

−∞

𝑑𝑥 (4.26; 4.27)  

Kde: 𝑥 ∈ (−∞;  ∞)   

 𝜋 ….. matematická konstanta (Ludolfovo číslo),  

 0  …. střední hodnota,  

 1  …. rozptyl.  

Distribuční funkce nám udává plochu, ve které se náhodná veličina vyskytuje 

s pravděpodobností  1 − 𝛼.  Vymezení této plochy je realizováno pomocí kvantilů. Nejčastěji 

používané kvantily normovaného normálního rozdělení jsou graficky znázorněny v obr.  4.2. 

Obrázek 4.2: Kvantily normovaného normálního rozdělení pravděpodobnosti NV 

 

 

 

 

 

 

 

 

V případě normovaného normálního rozdělení se: 

▪ s pravděpodobností 90 % náhodná veličina vyskytuje v intervalu 𝜇 ± 1,64𝜎, 

▪ s pravděpodobností 95 % náhodná veličina vyskytuje v intervalu 𝜇 ± 1,96𝜎, 

▪ s pravděpodobností 99 % náhodná veličina vyskytuje v intervalu 𝜇 ± 2,58𝜎. 

Hodnoty distribuční a kvantilové funkce, stejně jako hustota pravděpodobností, jsou 

z důvodů matematické náročnosti výpočtu tabelovány právě pro normované normální 

rozdělení. Tyto hodnoty jsou obsaženy také ve všech statistických softwarech. 
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Příklad 4.7 

Předpokládáme, že doba čekání na obsloužení v restauraci má normální rozdělení 

s parametry 𝑁(8;  0,49). Jaké procento zákazníků bude obslouženo:  

a) za méně než 7 minut, 

b) za více jak 9,5 minuty, 

c) v rozmezí 6–9 minut? 

Řešení  

Náhodná veličina 𝑋 → doba čekání na obsloužení v restauraci má normální rozdělení. 

Hodnota pravděpodobnosti vychází z výpočtu distribuční funkce normálního rozdělení 

𝑁(8;  0,49) podle vztahu (4.22). V případě ručního výpočtu a za předpokladu, že máme  

k dispozici tabulky distribuční funkce normálního rozdělení, přistoupíme ke 

standardizaci náhodné veličiny podle vztahu 4.25. Tím převedeme původní hodnotu  

náhodné veličiny 𝑋~𝑁(𝜇,  𝜎2)  na standardizovanou náhodnou veličinu U~𝑁(0; 1), která 

je vzdálená 0,7 směrodatné odchylky (𝜎) od střední hodnoty (𝜇), tedy na relativní vyjádření 

nezávislé na původních jednotkách.  

a) 𝑃(𝑋 < 7 ) = 𝑃(𝑈 <
7−8

0,7
) = 𝑃(𝑈 <  −1,43) = 1 − 𝐹(1,43) = 1 − 0,924 ≅  0,076.   

Do 7 sekund bude obslouženo 7,6 % zákazníků. 

Distribuční funkce normálního rozdělení  𝐹(𝑢) = 
1

2

2

2


e

uu
−

−

  

 

POZOR! Řešení daného příkladu bylo pouze nastíněno. Rozdíl ve výsledcích je způsoben 

nepřesností při zaokrouhlování. Pro veškeré další výpočty budeme využívat program IBM 

SPSS, který nabízí přesnější a efektivnější možnosti výpočtu. 

SPSS 
Transform → Compute Variable → Function group CDF  Noncentral CDF 

→ Functions and Special Variable Cdf. Normal             

a) 𝑃(𝑋 < 7 ) =  0,076564  
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Pokračování příkladu 4.7 

b) 𝑃(𝑋 > 9,5 ) =  0,016062  

 

 

c) 𝑃(6 < 𝑋 < 9,5 ) = 0,9818  

 

 

 

     

 

  

V případě, že provádíme statistické šetření na celé populaci, jsme schopni přesně pomocí 

popisných statistik zjistit parametry jejího chování. V následujícím textu se budeme věnovat 

pravděpodobnostním rozdělením náhodných veličin, které jsou odvozeny od normovaného 

normálního rozdělení a využívají se ve statistických postupech a metodách, jejichž součástí jsou 

induktivní úsudky z výběru populace.  

V odborné literatuře jsou níže uvedená rozdělení souhrnně nazývána rozděleními 

výběrovými. Výběrová pravděpodobnostní rozdělení využíváme především při odhadech 

populačních parametrů a při testování statistických hypotéz. Jestliže máme k dispozici výběr 

z populace, na jehož základě odhadujeme populační parametry, předpokládáme, že v případě 

dalšího výběru z téže populace se námi odhadované populační parametry budou lišit → jedná 

se tedy o náhodnou veličinu. Hodnoty uvedených výběrových rozdělení jsou, stejně jako 

hodnoty distribuční a kvantilové funkce normovaného normálního rozdělení, tabelovány  

z důvodů matematické náročnosti výpočtu. 

4.2.3 𝑪𝒉í-kvadrát rozdělení 

𝐶ℎí-kvadrát rozdělení (Pearsonovo 𝜒2-rozdělení) je rozdělení spojitých náhodných veličin, 

které se v matematické statistice využívá především k testování rozdělení pravděpodobnosti 

nebo k odhadu a testování rozptylu náhodné veličiny. 

Označení 

 𝑋~ 𝜒2(𝜈) 
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𝐶ℎí-kvadrát rozdělení vzniká jako součet druhých mocnin nezávislých náhodných veličin 

𝑈1, 𝑈2, … , 𝑈𝑛, které mají normované normální rozdělení 𝑁(0,1). 

𝜒2(𝜈) = ∑ 𝑈𝑖
2

𝑛

𝑖=1

 (4.28) 

Kde: 𝑈 ….. je normovaná normální náhodná veličina pro 𝑖 =  1, … , 𝑛,  

 𝑛 ….. počet vzájemně nezávislých normovaných veličin,  

 𝜈 ….. počet stupňů volnosti.  

 

Průběh této funkce (tvar rozdělení pravděpodobnosti) je dán jedním parametrem, který se 

nazývá  počet stupňů volnosti 𝜈 (řecké ný). Pojem „počet stupňů volnosti“ udává počet 

vzájemně nezávislých veličin. V případě testování statistických hypotéz (viz kapitola Testování 

hypotéz) slouží počet stupňů volnosti jako parametr pro porovnání testového kritéria 

s odpovídajícím rozdělením. V takovém případě je většinou hodnota parametru určena počtem 

pozorovaných náhodných veličin, sníženým o počet odhadovaných charakteristik. 

Příklad 4.8 

Vypočítejte 95% kvantil pro náhodnou veličinu 𝑋, která pochází z 𝑐ℎí-kvadrát rozdělení  

o pěti stupních volnosti. 

SPSS 
Transform → Compute Variable → Function group Inverse DF → Functions and 

Special Variable Idf. Chisq             

 𝑋~𝜒0,95
2 (5) = 11,07 

Hustota pravděpodobnosti 𝑓(𝑥) 𝑐ℎí-kvadrát rozdělení výběrové náhodné veličiny je 

asymetrická funkce. S rostoucím počtem vzájemně nezávislých normovaných veličin 𝑛 > 30 

je možné 𝑐ℎí-kvadrát rozdělení aproximovat normovaným normálním rozdělením. 

4.2.4 Studentovo t-rozdělení 

Studentovo t-rozdělení vzniká jako podíl dvou nezávislých náhodných veličin: náhodné 

veličiny s normovaným normálním rozdělením 𝑁(0,1) a náhodné veličiny s 𝑐ℎí-kvadrát 

rozdělením 𝜒2(𝜈).  
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Označení 

 𝑋~ 𝑡(𝜈) 

Studentovo 𝑡-rozdělení o 𝜈 stupních volnosti je definováno vztahem: 

𝑡(𝜈) =
𝑁(0; 1)

√𝜒2(𝜈)/𝜈
 (4.29) 

Kde: 𝑁(0; 1) ….. náhodná veličina s normovaným normálním rozdělením.  

 𝜒2(𝜈)  …… náhodná veličina s 𝑐ℎí-kvadrát rozdělením.  

 𝜈 …………. počet stupňů volnosti.  

Veličina Studentovo 𝑡-rozdělení je teoreticky odvozená hodnota, která je v matematické 

statistice základem pro odhady a testování populačních průměrů v případě, kdy neznáme 

skutečnou variabilitu (populační rozptyl 𝜎2 náhodné veličiny). V takovém případě vycházíme 

při výpočtech z odhadovaného výběrového rozptylu (𝑠2). 

 

Příklad 4.9 

Vypočítejte 90% kvantil pro náhodnou veličinu 𝑋, která pochází ze Studentova 𝑡-rozdělení 

o patnácti stupních volnosti. 

 SPSS 

Transform → Compute Variable → Function group Inverse DF → Functions and 

Special Variable Idf. T             

 
𝑋~𝑡0,90(15) = 1,34      

 

Hustota pravděpodobnosti 𝑓(𝑥) Studentova 𝑡-rozdělení výběrové náhodné veličiny je 

symetrická funkce a její zvonovitý tvar závisí na počtu stupňů volnosti výběrového souboru 𝜈. 

S rostoucím počtem stupňů volnosti se tvar Studentova pravděpodobnostního rozdělení 

aproximativně přibližuje hustotě normovaného normálního rozdělení. 

4.2.5 Fisher-Snedecorovo 𝑭-rozdělení 

Fisher-Snedecorovo F-rozdělení pravděpodobnosti vzniká jako podíl dvou náhodných veličin 

s 𝑐ℎí-kvadrát rozdělením.  

Označení 

 𝑋~ 𝐹(𝜈1; 𝜈2) 
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Fisher-Snedecorovo F-rozdělení je definováno vztahem: 

𝐹(𝜈1; 𝜈2) =
𝜒

1
2(𝜈1)/𝜈1

𝜒
2
2(𝑣2)/𝑣2

 (4.30) 

Kde: 𝜒1
2(𝜈1),  𝜒2

2(𝑣2)….. náhodné veličiny s 𝑐ℎí-kvadrát rozdělením,  

 𝜈1; 𝜈2 ….. počty stupňů volnosti.  

V matematické statistice se F-rozdělení využívá především při testování dvou výběrových 

rozptylů a dále například při testování hypotéz o rovnosti středních hodnot náhodné veličiny  

𝑋 u více než dvou výběrových souborů. Hustota pravděpodobnosti F-rozdělení je asymetrická 

a její tvar je dán parametry dvou nezávislých náhodných veličin.  

 

Příklad 4.9 

Vypočítejte 95% kvantil pro náhodnou veličinu, která má pět a patnáct stupňů volnosti.  

SPSS 
Transform → Compute Variable → Function group Inverse DF → Functions and 

Special Variable Idf. F             
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Shrnutí kapitoly

Vybraná rozdělení diskrétních náhodných veličin. 

Rozdělení Parametr Opakování Výpočet SPSS 

Alternativní 𝑋~𝐴(𝑝) 𝑛 = 1 𝐵𝑒𝑟𝑛𝑝𝑜𝑢𝑙𝑙𝑖(𝑥, 𝑝, 1) 

Geometrické 𝑋~𝐺𝑒(𝑝) n-krát/nezávislá 𝐺𝑒𝑜𝑚(𝑥, 𝑝) 

Binomické 𝑋~𝐵𝑖(𝑛, 𝑝) n-krát/nezávislá 𝐵𝑖𝑛𝑜𝑚 (𝑥, 𝑛, 𝑝) 

Hypergeometrické 𝑋~𝐻𝑔(𝑁, 𝑀, 𝑛) n-krát/závislá 𝐻𝑦𝑝𝑒𝑟 (𝑥, 𝑁, 𝑛, 𝑀) 

Poissonovo 𝑋~ 𝑃𝑜(𝜆) n-krát/nezávislá 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑝, 𝜆)  

Vybraná rozdělení spojitých náhodných veličin. 

Rozdělení Parametr Výpočet SPSS 

Normální (Gausovo)  𝑋~𝑁(𝜇,  𝜎2)  𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 𝜇,  𝜎2) 

Normované normální  𝑋~𝑈~𝑁(0; 1)  𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 0,1) 

𝑪𝒉í-kvadrát  𝑋~𝑁(0; 1) ~ 𝜒2(𝜈)  𝐶ℎ𝑖𝑠𝑞(𝑥, 𝑛𝑢)  

Studentovo 𝒕  𝑋~ 𝑁(0; 1),  𝜒2(𝜈) ~ 𝑡(𝜈) T(𝑥, 𝜈)  

Fisher-Snedecorovo F  𝑋~ 𝜒1
2(𝜈1),  𝜒2

2(𝑣2) ~𝐹(𝜈1, 𝜈2)  𝐹(𝑥, 𝜈1, 𝜈2) 
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4 Kontrolní otázky 

1. Jakými způsoby se charakterizuje zákon rozdělení diskrétní náhodné veličiny 

(matematickými funkcemi a číselnými charakteristikami)? 

2. Vysvětlete, co představuje náhodná veličina X u alternativního rozdělení a jaké má 

parametry.  

3. Co udává náhodná veličina X u geometrického rozdělení?  

4. V jakých případech se řídí diskrétní náhodná veličina binomickým rozdělením?  

5. Jaké parametry má binomické rozdělení a co znamenají?  

6. Jaký je klíčový rozdíl mezi hypergeometrickým a binomickým rozdělením z hlediska 

opakování pokusů?  

7. Co popisuje Poissonovo rozdělení a jaké typy událostí modeluje?  

8. Co znázorňuje Gaussova křivka? 

9. Jaké dva parametry charakterizují normální rozdělení a co každý z nich vyjadřuje? 

10. Popište tvar hustoty pravděpodobnosti normálního rozdělení.  

11. Uveďte pravděpodobnostní intervaly náhodné veličiny kolem střední hodnoty pro 1𝜎, 

2𝜎 a 3𝜎 a vysvětlete pravidlo ±3 sigma.  

12. Kdy se provádí standardizace náhodné veličiny, co to znamená?  

13. Jaké jsou nejčastěji používané kvantily normovaného normálního rozdělení  

s pravděpodobností 90 %, 95 % a 99 %?  

14. K čemu se využívají výběrová pravděpodobnostní rozdělení?  

15. Co znamená aproximace rozdělení. 
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4 Příklady k procvičení 

4.1 Rozdělení diskrétních náhodných veličin 

4.1.1   Z dlouhodobého sledování víme, že měřící přístroj se dopouští závažné chyby pro 7% 

měření, přičemž jednotlivá měření jsou nezávislá.   

a) Jaká je pravděpodobnost, že při dvaceti měřeních nedojde k žádné chybě?  [0,2342]      

                

b) Jaká je pravděpodobnost, že při dvaceti měřeních dojde maximálně ke dvěma 

     chybám?               [0,8389] 

 

4.1.2   Ve třídě 1.A je 18 chlapců a 10 dívek. 

a) Jaká je pravděpodobnost, že v náhodně sestavené pětici žáků budou alespoň dva 

                 chlapci?                                                                                                           [0,9589] 

b) Jaká je pravděpodobnost, že v náhodně sestavené pětici žáků budou maximální dvě 

dívky?                                                                     [0,7722] 

c) Jaká je pravděpodobnost, že při náhodném rozdělení třídy na dvě poloviny bude  

v jedné polovině právě 10 chlapců?                                                             [0,2291] 

d) Tři chlapci odešli na záchod. Jaká je pravděpodobnost, že v náhodně sestavené pětici 

žáků budou alespoň dva chlapci?                                                  [0,9359] 

  

4.1.3 V rámci výzkumu mezi kuřáky uvedlo 80 % dospělých, že začalo kouřit před dovršením 

          18 let. Uvažujte skupinu deseti náhodně vybraných dospělých kuřáků a vypočítejte: 

a) Pravděpodobnost, že právě osm z nich začalo kouřit před osmnáctým rokem?    

     [0,3019] 

b) Pravděpodobnost, že více než osm z nich začalo kouřit před osmnáctým rokem?   

[0,3758] 

c) Pravděpodobnost, že alespoň čtyři z nich nezačali kouřit před osmnáctým rokem?  

  [0,1209] 

 

4.1.4 Žáci fotbalového klubu soutěží, kolik gólů dají v případě, že mají 10 pokusů.  

          Předpokládaná pravděpodobnost úspěšného vstřelení gólu je 0,75. Jaká je  

          pravděpodobnost, že jeden z členů klubu dá:  

a) právě 4 góly,                                              [0,0162] 

b) méně než 3 gólů,                                                                             [0,0197] 
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c) více než 6 gólů.                                           [0,7758] 

 

4.1.5 Na telefonní ústřednu přijde během 8 hodin v průměru 360 žádostí o spojení. Jaká je  

          pravděpodobnost, že během příštích 10 minut přijdou: 

a) 4 žádosti o spojení,                                               [0,0729] 

b) nejvýše 4 žádosti o spojení?                             [0,132] 

 

4.2 Rozdělení spojitých náhodných veličin 

4.2.1 Výška dospělých mužů v určité populaci má normální rozdělení s průměrem 𝜇 =180 cm 

         a směrodatnou odchylkou 𝜎=8 cm. Jaká je pravděpodobnost, že náhodně vybraný bude 

         vyšší než 190 cm?                                                                                            [0,106]

               

4.2.2 Bylo zjištěno, že průměrný počet odpracovaných hodin je u zdravotnického personálu 

         81,7 hod./týden se směrodatnou odchylkou 6,9 hodiny. Předpokládejme, že se jedná  

         o náhodnou veličinu s normálním rozdělením.  

  a) Jaké procento pracovníků vykazuje pracovní dobu v rozmezí 70 až 90 hodin za týden? 

  [0,8405] 

 b) Jaká je pravděpodobnost, že náhodně vybraný pracovník bude pracovat déle než 95 

 hodin?                            [0,0269] 

 c) Jaké procento zdravotníků pracuje týdně méně než 70 hodin?                             [0,0446] 

 

4.2.3 Náhodná veličina 𝐹 má Fisherovo rozdělení 𝐹(12; 7) 

  a) Určete 5% a 95% kvantily náhodné veličiny 𝐹.                   [0,3432;  3,5746] 

  b) Určete pravděpodobnost 𝑃(𝐹 < 4,666)                     [0,975] 

 

4.2.4 Náhodná veličina 𝜒2 má Pearsonovo rozdělení 𝜒2(15). 

  a) Určete dolní a horní kvartil náhodné veličiny 𝜒2 .                              [11,036; 18,245] 

  b) Určete pravděpodobnost 𝑃(𝜒2 <  7,26)                                    [0,0499] 

 

4.2.5 Náhodná veličina t má Studentovo rozdělení 𝑡(𝜈).  

a) Určete 99% kvantily pro 𝜈 = 4.                                                                                    [3,7469] 

b) Určete 99% kvantily pro 𝜈 = 23.                                                                   [2,4998] 
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5 ZPRACOVÁNÍ DATOVÉHO SOUBORU 

Je-li stanoven jasný cíl statistického zkoumání a je-li k dispozici příslušný soubor statistických 

jednotek, začíná vlastní statistická práce, kterou lze rozdělit do několika na sebe navazujících 

etap.  

První etapou je statistické zjišťování, které je založeno na získání údajů o hodnotách znaků 

sledovaných u statistických jednotek (viz kapitola Teorie odhadu). Jedná se o jednu z velmi 

důležitých činností, neboť chybně získané nebo neúplné údaje nelze ve většině případů již nijak 

získat nebo opravit. Výsledkem statistického zjišťování jsou ve většině případů neuspořádané 

kvalitativní a kvantitativní proměnné, které postrádají řád a je velmi obtížné se v nich 

orientovat. Před aplikací výpočetních metod je proto potřeba provést uspořádání (sumarizaci) 

a kontrolu těchto údajů, a to z hlediska formálního, logického i početního.  

Získání uceleného přehledu o datech a jejich základní uspořádání umožňuje další etapa 

statistické práce, a tou je statistické zpracování, které je založeno na technikách třídění, 

tabelování a grafickém znázornění.  Cílem grafického znázornění je podat rychlou  

a srozumitelnou informaci o studovaném jevu či o vzájemném vztahu více jevů.  

Hlavním úkolem celého statistického zkoumání a také jednou z etap statistické práce  

je vlastní statistická analýza neboli rozbor, který vychází z výstižného popisu zkoumaných 

jevů na základě výpočtu elementárních statistických charakteristik. Statistickými 

charakteristikami nazýváme číselné hodnoty, které nám podávají základní informaci  

o vlastnostech datového souboru. Tyto statistiky mohou být nejen předmětem vlastního 

statistického zkoumání, ale také základem pro aplikaci složitějších statistických analýz, jejichž 

cílem je určení statistických zákonitostí a jejich vzájemných souvislostí (např. korelační 

analýza, regresní analýza atd.).  

Poslední etapou statistické práce je slovní vyhodnocení a porovnání získaných výsledků  

o chování sledovaných jevů s teoretickými předpoklady a jejich prezentace pomocí vhodně 

zvolených grafů a tabulek. Při formulování závěrů a rozsahu platnosti dosažených výsledků  

je důležité neopomenout skutečnost, že vzhledem k pravděpodobnostnímu charakteru 

zkoumaných jevů není matematicky možné přesně vystihnout všechny sledované vlastnosti 

statistických jednotek.  

Výběr zpracování statistických dat a početních postupů se vždy odvíjí od typu proměnných  

a jejich počtu.  Přesná klasifikace proměnných, které statisticky zpracováváme, je důležitá.  

Pro kvantitativní proměnné používáme jiné metody než pro kvalitativní proměnné. Nesprávné 
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definování typu proměnných vede ke zkreslení výsledků a často také ke ztrátě informací 

obsažených v datech.  

V následujícím výkladu se podrobněji zaměříme na popisnou statistiku (deskriptivní 

statistiku). Popisná statistika je předmětem statistického zpracování a zabývá se elementárními 

metodami popisu vlastností (údajů, dat) statistických jednotek získaných z populačních nebo 

výběrových zjišťování. Elementární metody popisu dat v tomto pojetí zahrnují třídění, 

tabelování, grafické znázornění a metody výpočtu číselných charakteristik.  

Číselný a grafický popis dat budeme dále uvádět s ohledem na jednotlivé typy proměnných, 

ale bez ohledu na to, zda se jedná o základní nebo výběrový soubor (popisujeme jen získaná 

data, neprovádíme statistickou indukci – zobecňování).  

5.1 Třídění, tabelování a grafické znázornění proměnných 

Prvotní zpracování získaných údajů spočívá v roztřídění hodnot jednotlivých proměnných  

do tabulek rozdělení četností a grafického znázornění těchto rozdělení.  

Tříděním se rozumí rozdělení statistického souboru do skupin podle hodnot jednoho nebo 

více třídicích znaků. Je-li třídicí znak jeden, hovoří se o jednorozměrném rozdělení četností, 

při třídění podle dvou znaků pak o dvourozměrném rozdělení četností.     

5.1.1 Jednorozměrné rozdělení četností 

Absolutní četnost 𝒏𝒊 představuje počet opakování hodnoty znaku v původní řadě dat.  

𝑛1  +  𝑛2 + . . . . + 𝑛𝑘  = ∑ 𝑛𝑖

𝑘

𝑖=1

= 𝑛 
 

(5.1) 

Kde: 𝑛𝑖 …. absolutní četnost výskytu dané varianty znaku, pro i = 1, 2, 3, ..., k, 

 𝑛 ….. rozsah souboru. 

 

Statistický soubor má 𝑛 statistických jednotek, u kterých sledujeme vlastnosti (znaky) 

proměnné 𝑋. Číselné charakteristiky znaků tvoří neuspořádanou řadu hodnot 𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝑛. 

V této řadě je však pouze 𝑘 různých variant (kategorií) hodnot, ostatní se opakují. Těchto 

𝑘 různých variant seřadíme vzestupně do tabulky a každé z variant přiřadíme číslo, které 

představuje počet opakování hodnoty (četnost výskytu dané varianty znaku) v původní řadě 

dat. Součet četností musí být vždy roven rozsahu statistického souboru 𝑛.   
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Relativní četnost 𝒑𝒊 udává, jaká část vyšetřovaného souboru má hodnotu znaku 𝑥𝑖. 

Relativní četnosti se při interpretaci výsledků vyjadřují většinou v procentech. Pro součet 

relativních četností platí: 

𝑝1  +  𝑝2  +  𝑝3 +  … … … … … . + 𝑝𝑘  = ∑ 𝑝𝑖

𝑘

𝑖=1

= 1 (5.2) 

 𝑝𝑖 =
𝑛𝑖

𝑛
  (5.3) 

Kde: 𝑝𝑖 …. relativní četnost, pro i = 1, 2, 3, .., k, 

 𝑛𝑖 …  absolutní četnost, 

 𝑛 ….. rozsah souboru. 

 

Kumulativní četnosti představují počet statistických jednotek s hodnotou znaku menší 

nebo rovnou 𝑥𝑖. Kumulativní četnost může být absolutní 𝑵𝒊, tak relativní 𝑷𝒊.  

𝑁𝑘 = 𝑛1  +  𝑛2  + 𝑛3 +  … … … … … . + 𝑛𝑘  = ∑ 𝑛𝑖

𝑘

𝑖=1

 (5.4) 

                        𝑃𝑘 =  𝑝1  +  𝑝2  +  𝑝3 +  … … … … … . + 𝑝𝑘  = ∑ 𝑝𝑖

𝑘

𝑖=1

 (5.5) 

Kde: 𝑝𝑖 ….. relativní četnost, pro i = 1, 2, 3, …., k, 

 𝑛𝑖 …. absolutní četnost, 

 𝑛 ….. rozsah souboru. 

Výsledky třídění se zapisují do tabulek (obr. 5.1), které se k tomu účelu sestavují. 

Obrázek 5.1: Tabulka rozdělení četností

 

 

 

 

Varianta 

znaku 𝒙𝒊 

Absolutní 

četnost 𝒏𝒊 

Relativní 

četnost 𝒑𝒊  

Kumulativní absolutní 

četnost 𝑵𝒊 

Kumulativní relativní 

četnost 𝑷𝒊 

𝑥1 𝑛1 𝑝1 𝑁1 = 𝑛1 𝑃1 =  𝑝1  

𝑥2 𝑛2  𝑝2 𝑁2 = 𝑛1  + 𝑛2  𝑃2 =  𝑝1  +  𝑝2 

….. ….. …..   

𝑥𝑘 𝑛𝑘 𝑝𝑘 𝑁𝑘 = 𝑛1  + 𝑛2 +. . . + 𝑛𝑘 𝑃𝑘 =  𝑝1  + 𝑝2 +. . + 𝑝𝑘   
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Příklad 5.1 

Univerzitní knihovnu během jedné hodiny navštívilo 26 studentů. V následující tabulce jsou 

uvedeny počty knih, které si studenti zapůjčili.  

4 2 3 4 1 2 5 4 5 4 2 3 4 

1 1 1 1 1 4 2 3 4 1 2 5 4 

Na základě uvedených údajů vytvoříme tabulku rozdělení četností. 

SPSS 
Analyze → Descriptive Statistics → Frequencies → proměnná Knihy do 

okna Variable(s) → OK 

 

 

 

5.1.2 Intervalové jednorozměrné rozdělení četností  

Při velkém množství údajů (např. třídění hodnot spojitých nebo diskrétních znaků s mnoha 

navzájem různými hodnotami) je použití tabulky rozdělení četností nepřehledné a její 

vypovídací schopnost je velmi malá. V tomto případě je vhodnější použít intervalové 

rozdělení četností.  

Intervalové rozdělení četností má své výhody i nevýhody. Při konstrukci intervalového 

rozdělení četností dochází k určitému zjednodušení v tom smyslu, že se zachycuje četnost 

intervalu místo zjištěných hodnot. Hlavní nevýhodou je však ztráta informace, která plyne 

z agregace hodnot znaků u sledované proměnné. V současné době, kdy dochází ke zpracování 

dat pomocí statistických programů a není třeba se obávat velkého množství údajů, se toto 

 𝒏𝒊 𝒑𝒊 
𝑷𝒊 

Počet všech platných jednotek = rozsah 

souboru 𝑛 
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rozdělení využívá především pro zjednodušení dané úlohy či k vytvoření kategorií pro další 

potřeby zkoumání a rozboru dat.  

Pro stanovení počtu intervalů 𝒌 neexistuje jednotný předpis. Ve statistické literatuře je sice 

možné nalézt doporučení pro určení počtu intervalů, ale vždy záleží na rozhodnutí analytika  

a cílech prováděného statistického šetření.   

Doporučená pravidla pro určení počtu intervalů: 

Sturgessovo pravidlo  

𝑘 ≅ 1 + 3,3 log 𝑛 (5.6) 

Yuleho pravidlo  

𝑘 ≅ √𝑛  (5.7) 

Kde: 𝑘 ….. počet intervalů, 

 𝑛 ….. rozsah souboru, 

 log .. dekadický logaritmus. 

Tvar intervalového rozdělení lze podstatně ovlivnit délkou intervalů 𝒉. Obecně platí, že 

při volbě příliš malé intervalové šíře nebudou podstatné vlastnosti rozdělení dostatečně 

zřetelné, protože budou zastřeny přítomností náhodných faktorů (náhodným kolísáním). Bude-

li naopak šíře intervalů příliš velká, bude tvar vyšetřovaného rozdělení patrný jen ve velmi 

hrubých rysech a nevyniknou tak zákonitosti charakteristické pro daný soubor.  

ℎ =
𝑅

𝑘
  (5.8) 

Kde: 𝑘 ….. počet intervalů, 

 𝑅 ….. variační rozpětí → (𝑥𝑚𝑎𝑥 −  𝑥𝑚𝑖𝑛), 

 𝑥𝑚𝑖𝑛… minimální hodnota znaku, 

 𝑥𝑚𝑎𝑥… maximální hodnota znaku.  

   POZOR! Vždy musí být jednoznačně určeno, do kterého intervalu jednotku zařadit!                                                                           

5.1.3 Grafická analýza 

Názornou představu o studovaném souboru poskytuje grafické znázornění příslušného 

rozdělení četností. Grafické zobrazení umožňuje rychlou a přehlednou představu o tendencích 

a charakteristických rysech analyzovaných proměnných, a také rychlou kontrolu sledovaných 

údajů. Grafy (obr. 5.2) jsou rovněž vhodným prostředkem pro prezentaci statistických 

výsledků. Volba vhodného typu grafu musí zohledňovat typ zobrazované proměnné. 
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Spojnicový graf (polygon) je jednoduchý a všestranný nástroj pro grafické shrnutí hodnot 

proměnných. Na vodorovnou osu (osa 𝑥) se vynáší jednotlivé varianty proměnné v pořadí od 

„nejmenší“ do „největší“ a na svislou osu (osa 𝑦) příslušné hodnoty četností. Nejčastěji se 

používá pro zobrazení hodnot proměnných v závislosti na čase 𝑡. Tento graf není vhodný pro 

zobrazení diskrétních proměnných. 

Bodový graf zobrazuje datové body bez propojovacích čar. Je vhodný pro vizualizaci 

kvantitativní diskrétní proměnné, anebo pro grafické znázornění vztahů mezi dvěma 

proměnnými (viz níže Vícerozměrné rozdělení četností).  

  Obrázek 5.2: Vybrané typy grafického znázorní dat 

Výsečový graf Sloupcový graf 

  

 

Spojnicový graf 

 

Bodový graf 

  

Výsečový graf (koláčový) je graf, kde plochy kruhových výsečí prezentují četnost výskytu 

jedné varianty proměnné v poměru k součtu četností všech variant. Jednotlivé výseče se 

označují nejen relativní četností, ale i četností absolutní, aby se předešlo chybné prezentaci 

výsledků šetření. 

Sloupcový graf může nabývat nejrůznějších tvarů. Obvykle zobrazuje na ose 𝑥 kategorie 

proměnné a na ose 𝑦 hodnoty četnosti jejich výskytu. Tento typ grafu se používá především 

k zobrazování a srovnávání nespojitých, nominálních a ordinálních proměnných. 

Na rozhraní mezi tabulkami a grafy, a mezi zobrazením zdrojových dat a souhrnných údajů 

(např. četností), se nachází grafy, které nám poskytují informace o rozdělení četností a také  

o základních číselných charakteristikách proměnných (např. minimum, maximum, medián 

atd.). Patří sem například box-plot a histogram. Jedná se o grafy, které řadíme do části popisné 
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statistiky, nazývané průzkumová (explorační) analýza dat, které se budeme podrobněji 

věnovat v další kapitole. 

5.2 Číselné charakteristiky  

Tabulka rozdělení četností a její grafické znázornění je sice přehlednější než původní neutříděná 

řada čísel, ale aby byly některé vlastnosti proměnné lépe patrné, musíme informace o nich 

koncentrovat do jediného (vhodného) čísla, tzv. číselné charakteristiky.  

Statistickými charakteristikami nazýváme číselné hodnoty, které nám podávají základní 

informaci o vlastnostech statistického souboru. Podle toho, jaké vlastnosti rozdělení tyto 

charakteristiky popisují, je dělíme na charakteristiky polohy, variability a tvaru (šikmost  

a špičatost).  

Charakteristika polohy (úrovně) poskytuje základní informaci o daném rozdělení. Míra 

polohy je taková hodnota náhodné veličiny, kolem které se soustřeďují všechny ostatní hodnoty 

náhodné veličiny. Volba nejvhodnější charakteristiky úrovně závisí na vlastnostech 

sledovaného rozdělení a na účelu, k němuž chceme tuto charakteristiku použít. Často 

popisujeme polohu rozdělení několika charakteristikami polohy současně. 

Charakteristiky variability (proměnlivosti, rozptýlení) hodnot znaků jsou čísla, která 

popisují z různých hledisek proměnlivost sledovaného kvantitativního znaku. Pokud  

je variabilita hodnot znaku nízká, potom příčiny, které ji způsobují, lze pokládat za nepodstatné 

či náhodné. Vysoká variabilita naopak znamená nevyrovnanost statistických jednotek 

z hlediska zkoumaného znaku. Vlivy, které toto kolísání způsobují, musíme pokládat  

za podstatné a provést jejich identifikaci.  

Pokud uvažujeme o variabilitě jako o absolutních rozdílech hodnot znaků od střední 

hodnoty nebo od sebe navzájem, nazýváme ji absolutní variabilitou a měříme ji mírami 

absolutní variace (např. variační rozpětí, rozptyl). V některých případech se vyskytnou 

souvislosti, kdy absolutní vyjádření a absolutní míry nejsou vhodné ke srovnání kolísání znaku. 

Jde většinou o případy, kdy zkoumáme variabilitu dvou nebo více znaků, které se liší úrovní, 

nebo znaků měřených v nestejných měrných jednotkách. V těchto případech používáme 

relativní charakteristiky variability, které měří variabilitu pomocí vyjádření některé 

absolutní míry v poměru ke střední hodnotě sledovaného znaku (např. variační koeficient).  

Charakteristiky tvaru se obvykle používají společně s charakteristikami polohy  

a variability a slouží k popisu specifických vlastností dat (míry nesouměrnosti). Přestože 
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statistické soubory mají stejnou úroveň a variabilitu znaku, mohou se přesto od sebe odlišovat 

tvarem rozdělení četností.  

Podle konstrukce se číselné charakteristiky dělí na momentové a kvantilové. Informace 

uvedené v této části kapitoly jsou úzce propojené s kapitolou „Číselné charakteristiky 

náhodných veličin“. 

Pro účely definování základních číselných charakteristik (ne všechny číselné 

charakteristiky jsou vhodné pro všechny typy proměnných) je potřeba určit jejich typ (viz 

kapitola Základní pojmy). V následujícím textu budeme vycházet z rozdělení proměnných 

podle vztahů mezi jejich hodnotami. Podle tohoto hlediska rozlišujeme proměnné  

na nominální, ordinální a kvantitativní. 

5.2.1 Číselné charakteristiky nominálních proměnných 

Nominální proměnná nabývá různých, avšak rovnocenných variant hodnot znaků. Nelze  

ji smysluplně porovnávat ani seřadit (např. pohlaví, barva, značka auta).  Hodnotami nominální 

proměnné mohou být slovní varianty (text) nebo číselné kódy.  

MÍRY POLOHY 

Nejjednodušším a jedinou charakteristikou polohy u nominálních proměnných je modus 𝒙. 

Modus určujeme v případech, kdy potřebujeme vystihnout nejtypičtější hodnotu znaku 

𝑥𝑖  daného souboru.  

Jeho stanovení je založeno na určení modální kategorie 𝒌, tedy kategorie, která má 

nejvyšší četnost. V případě asymetrických rozdělení je jeho nevýhodou, že necharakterizuje 

polohu rozdělení příliš přesně. V praktických příkladech, kde je výsledná hodnota znaku 

ovlivněna různými poměrně silnými faktory, se stává, že dané rozdělení má více než jeden 

modus. Pak hovoříme o vícemodálním rozdělení četností. 

MÍRY VARIABILITY 

Při charakterizování variability vycházíme z koncentrace hodnot (hromadění hodnot kolem 

některé z variant proměnné) v jednotlivých kategoriích. V případě, že popisovaná nominální 

proměnná má celkem 𝑘 kategorií, jejichž četnosti jsou 𝑛1, 𝑛2 , 𝑛3, . . . , 𝑛𝑘 , pak je možné 

k výpočtu míry variability použít: 
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Variační poměr 
 

𝑉 =  1 − 𝑝𝑚𝑜  pro,     𝑉 ∈ 〈0, (𝑘 − 1)/𝑘〉 
(5.9) 

Kde: 𝑝𝑚𝑜 …. relativní četnost modální kategorie. 

𝑝𝑚𝑜 =  
𝑛𝑚𝑜

𝑛
 (5.10) 

Kde: 𝑛𝑚𝑜 … četnost modální kategorie. 

 𝑛 ……. rozsah souboru. 

Výpočet míry variability u nominálních proměnných má význam pouze tehdy, pokud je 

cílem výzkumu porovnání více nominálních proměnných mezi sebou, anebo pokud provádíme 

porovnání u jedné proměnné, ale mezi více skupinami (výběry). 

5.2.2 Číselné charakteristiky ordinálních proměnných 

Ordinální (pořadová) proměnná je typická tím, že u jejích hodnot vždy existuje určité 

uspořádání. Jednotlivé varianty znaků je možné seřadit a vzájemně porovnávat, ale není možné 

určit velikost rozdílů mezi nimi (např. známka ve škole, velikost oděvu S, M, L). 

MÍRY POLOHY 

Polohu rozdělení u tohoto typu proměnných můžeme popsat pomocí výše zmíněného modu 

nebo další charakteristikou, kterou je medián 𝒙̃.   

Medián je hodnota, která dělí soubor na dvě poloviny. Padesát procent jednotek má hodnotu 

nižší než medián a padesát procent jednotek ji má vyšší než medián. Medián je hodnota znaku 

prostřední jednotky souboru, pokud jsou jednotky uspořádány podle velikosti a rozsah souboru 

je lichý. V případě sudého počtu hodnot je medián vypočítán jako aritmetický průměr dvou 

středních hodnot. 

Medián   

Lichý rozsah souboru 𝑥̃ =  𝑥𝑛+1
2

 (5.11) 

Sudý rozsah souboru 
𝑥̃ =  

𝑥𝑛
2

+ 𝑥𝑛
2

+1

2
 (5.12) 

Kde: 𝑥𝑖 … hodnota znaku, pro i = 1, 2, 3, …., n. 

Medián řadíme mezi kvantilové charakteristiky, a pro určení míry polohy u ordinálních 

proměnných lze využít i jiné kvantily rozdělení, nejčastěji horní (𝑥̃75) a dolní kvartil (𝑥̃25) (více 

viz kapitola Průzkumová analýza dat).  
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MÍRY VARIABILITY 

Pro určení míry variability ordinálních proměnných můžeme použít: 

 

Interkvartilové rozpětí   

𝐼𝑄𝑅 =  𝑥̃75 − 𝑥̃25 (5.13) 

Ordinální rozptyl   

𝑑𝑜𝑟𝑣𝑎𝑟 =  2 ∑ 𝑃𝑖(1 − 𝑃𝑖),𝑘
𝑖=1   pro 𝐷𝑜𝑟𝑣𝑎𝑟 ∈ 〈0, (𝑘 − 1)/2〉 (5.14) 

Kde: 𝑃𝑖……kumulativní relativní četnosti, pro 𝑖 = 1, 2, … . , 𝑘. 

 

Normalizovaný ordinální rozptyl  

 

𝑛𝑜𝑟𝑚. 𝑑𝑜𝑟𝑣𝑎𝑟 =  2 −
𝑑𝑜𝑟𝑣𝑎𝑟

(𝑘−1)
,  pro 𝑛𝑜𝑚. 𝑑𝑜𝑟𝑣𝑎𝑟 ∈ 〈0; 1〉 (5.15) 

Kde: 𝑝𝑖……relativní četnosti jednotlivých kategorii pro 𝑖 = 1, 2, … . , 𝑘. 

5.2.3 Číselné charakteristiky kvantitativních proměnných 

Kvantitativní proměnné, nebolí číselné proměnné, jsou vždy měřitelné. Lze s nimi provádět 

běžné matematické operace a vyhodnocovat je pomocí většiny metod popisné statistiky. Dělíme 

je na diskrétní (například počet studentů) a spojité (například příjem). 

MÍRY POLOHY 

Pro popis diskrétní kvantitativní proměnné můžeme využít již výše uvedený modus  

a medián. U spojitých kvantitativních proměnných je pro určení polohy rozdělení vhodný 

pouze medián. Výpočet modu z nesetříděných spojitých dat neposkytuje smysluplnou 

interpretaci. 

Číselné charakteristiky, které používáme u obou typů kvantitativních proměnných, jsou 

průměry. V popisné statistice se nejčastěji používá průměr aritmetický. Další dva níže 

uvedené průměry, harmonický a geometrický, se využívají především v pokročilejších 

metodách statistických analýz (analýza časových řad, indexní analýza).  

Pro všechny tyto charakteristiky je společné, že jsou určovány na základě všech 

naměřených hodnot znaku 𝑥. Tato vlastnost způsobuje, že průměry jsou citlivé na hodnoty 

znaků, které se od ostatních hodnot výrazně liší (odlehlá pozorování). U souborů s malým 

rozsahem může odlehlé pozorování značně zkreslit výslednou hodnotu.  

V případech, kdy soubor dat obsahuje hodnoty, které se výrazně liší, je u kvantitativních 

charakteristik vhodnější k určení míry polohy zvolit medián, jehož velkou výhodou  

je robustnost. Robustnost číselných charakteristik obecně spočívá v tom, že vypočtené hodnoty 
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nejsou ovlivněny odlehlými hodnotami.  Medián se tak často používá v případech, kdy 

kvantitativní proměnná má silné zešikmení či extrémní hodnoty.  

Uvedené vztahy ilustruje obrázek 5.3. První obrázek představuje symetrické rozložení 

údajů, ve kterém se všechny základní charakteristiky polohy sobě rovnají. Druhý obrázek 

znázorňuje případ pravostranné nesouměrnosti dat, kdy převažují hodnoty nižší než aritmetický 

průměr.  

Obrázek 5.3: Grafické znázornění charakteristik polohy 

 

 

 

 

 

 

 

            

 

Aritmetický průměr 𝒙̅ charakterizuje střed polohy rozdělení.  Je to nejčastěji používaná 

míra polohy, která vychází z definice prvního obecného momentu náhodné veličiny 𝑋 (viz 

kapitola Číselné charakteristiky náhodných veličin).  Aritmetický průměr je definován jako 

součet všech naměřených hodnot 𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝑛 dělený celkovým rozsahem souboru 𝑛.  

Prostá forma  𝑥̅ =  
𝑥1 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑛

𝑛
=  

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
 (5.16) 

Kde: 𝑥𝑖 … hodnota znaku, pro i = 1, 2, 3, …., n, 

 𝑛 … celkový rozsah souboru. 

Vážená forma  𝑥̅ =  
𝑥1𝑛1 + 𝑥2𝑛2  + ⋯ + 𝑥𝑘𝑛𝑘

𝑛1 +  𝑛2 + ⋯ + 𝑛𝑘
=  

∑ 𝑥𝑖
𝑘
𝑖=1 𝑛𝑖

𝑛
= ∑ 𝑥𝑖

𝑘

𝑖=1

𝑝𝑖 (5.17) 

 ∑ 𝑛𝑖

𝑘

í=1

= 𝑛 (5.18) 

Kde: 𝑥𝑖 … hodnota znaku nebo středy intervalů hodnot (aritmetický průměr mezních 

         hodnot znaků), pro i = 1, 2, 3, …., n, 

 𝑛𝑖 … absolutní četnost znaku v jednotlivých kategoriích, pro i = 1, 2, 3, …., k, 

 𝑝𝑖 … relativní četnost znaku v jednotlivých kategoriích, pro i = 1, 2, 3, …., k, 

 𝑘 … počet kategorií. 
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V praxi se můžeme dostat do situace, kdy je třeba určit aritmetický průměr z intervalového 

rozdělení (setříděné údaje), aniž bychom znali původní řadu hodnot nebo aritmetické průměry 

intervalů. V takovém případě intervalové průměry „odhadujeme“. K tomu je však zapotřebí 

splnit určitý předpoklad o rozdělení hodnot znaku uvnitř intervalů. Nejčastěji předpokládáme, 

že je toto rozdělení symetrické, a pro výpočet aritmetického průměru odhadujeme středy 

intervalů. Celkový aritmetický průměr pak vypočítáme jako vážený aritmetický průměr středů 

intervalů. Musíme si však uvědomit, že takto získaná hodnota představuje přesnou hodnotu 

aritmetického průměru pouze v případě, že skutečné aritmetické průměry intervalů jsou totožné 

se středy intervalů, nebo že se chyby vzniklé asymetrií rozdělení kompenzují.  

Obecně se odhad aritmetického průměru vypočítaný pomocí středů intervalů může  

od skutečné hodnoty aritmetického průměru lišit až o polovinu průměrné délky intervalů (mají-

li všechny intervaly stejnou šíři).  

Vlastnosti aritmetického průměru 

Součet odchylek jednotlivých hodnot od průměru je roven nule. 

∑(𝑥𝑖 − 𝑥̅) = 0

𝑛

𝑖=1

 (5.19) 

Součet čtverců odchylek jednotlivých hodnot znaku od jejich průměru je vždy menší než 

součet čtverců odchylek těchto hodnot od libovolné jiné hodnoty 𝐴 =  𝑥. 

∑(𝑥𝑖 − 𝑥̅)2 < ∑(𝑥𝑖 − 𝐴)2; 𝐴 ≠ 𝑥

𝑛

𝑖=1

𝑛

𝑖=1

 (5.20) 

Přičteme-li ke všem hodnotám znaku libovolnou kladnou nebo zápornou konstantu, zvýší 

se nebo sníží průměr o tuto konstantu. 

Vážený aritmetický průměr se nezmění, pokud násobíme váhy (tj. četnosti) libovolnou 

konstantou různou od nuly. 

Transformujeme-li hodnoty původního znaku 𝑋 na hodnoty znaku 𝑌 tak, že 𝑦𝑖 = 𝑎𝑥𝑖 + 𝑏,   

𝑖 =  1, . . , 𝑛, kde 𝑎, 𝑏 jsou libovolné konstanty (𝑎 ≠  0), pak průměry obou znaků splňují 

relaci. 

𝑦̅ = 𝑎𝑥̄ + 𝑏 (5.21) 

Aritmetický průměr součtu znaků 𝑋 a 𝑌 se rovná součtu aritmetických průměrů těchto 

znaků při stejných rozsazích souborů. 

𝑥 + 𝑦̅̅ ̅̅ ̅̅ ̅ = 𝑥̅ + 𝑦̅ (5.22) 

Nevýhodou aritmetického průměru je jeho citlivost na odlehlá pozorování.  
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Harmonický průměr 𝒙̅𝑯 je definován jako podíl rozsahu souboru a součtu převrácených 

hodnot znaku. Používá se v situacích, kdy je potřeba zohlednit váhu hodnoty sledované 

proměnné. Využití harmonického průměru ve statistice je především v indexní analýze, kdy  

se počítá průměr z veličin vyjádřených podílem (například cenové indexy). 

𝑥̅𝐻 =  
𝑛

1
𝑥1

+
1
𝑥2

+ ⋯ +
1

𝑥𝑛

=  
𝑛

∑
1
𝑥𝑖

𝑛
𝑖=1

 
(5.23) 

Harmonický průměr nepoužíváme v případě, že se v souboru dat nacházejí nulové hodnoty. 

Interpretace jeho výsledků je komplikovanější vzhledem k povaze vstupních proměnných 

(podíl hodnot). 

Geometrický průměr 𝒙𝑮  je statistická veličina, která je definována jako 𝑛-tá odmocnina 

součinu nezáporných reálných čísel. Jeho hodnota není (na rozdíl od aritmetického průměru) 

výrazně ovlivněna odlehlými hodnotami ze souboru dat. 

𝑥̅𝐺 = √𝑥1  ∙  𝑥2  ∙  𝑥3 ∙ … ∙ 𝑥𝑛
𝑛 =  √∏ 𝑥𝑖

𝑛

𝑖=1

𝑛

 (5.24) 

V analýze časových řad se geometrický průměr využívá pro výpočet průměrného tempa růstu.  

MÍRY VARIABILITY 

Míry variability vyjadřují rozmístění hodnot dané proměnné okolo střední hodnoty. K popisu 

míry rozptýlenosti používáme dvě skupiny charakteristik – míry absolutní variability a míry 

relativní variability. 

ABSOLUTNÍ míry variability 

Absolutní míry variability popisují proměnlivost statistického souboru ve stejných měrných 

jednotkách, v jakých je zaznamenána statistická proměnná.  

Variační rozpětí 𝑹 je nejjednodušší mírou absolutní variability. Variační rozpětí vyjadřuje 

šířku intervalu, v němž se pohybují jednotlivé hodnoty sledovaného znaku.  

                     𝑅 = 𝑥𝑚𝑎𝑥 −  𝑥𝑚𝑖𝑛                                                                              (5.25) 

Kde: 𝑥𝑚𝑖𝑛… minimální hodnota znaku,  

 𝑥𝑚𝑎𝑥… maximální hodnota znaku.  

Výhodu variačního rozpětí je velmi jednoduchý výpočet.  Není to však charakteristika příliš 

vhodné pro nehomogenní soubory, protože odlehlé krajní hodnoty, vzhledem k ostatním 
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hodnotám, zvyšují hodnotu variačního rozpětí. Její nevýhodou je také to, že poskytuje jen hrubý 

a předběžný odhad variability. 

Rozptyl 𝑺𝟐 je základní mírou variability. Měří současně variabilitu hodnot kolem    

aritmetického průměru a variabilitu ve smyslu vzájemných odchylek jednotlivých hodnot 

znaku.  

Prostá forma  𝑆2 =  
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1

𝑛
 (5.26) 

Kde: 𝑥𝑖 … hodnota znaku, pro i = 1, 2, 3, …., n, 

 𝑥̅ …. aritmetický průměr, 

 𝑛 … celkový rozsah souboru. 

Vážená forma  𝑆2 =  
∑ (𝑥𝑖 − 𝑥̅)2 ∙ 𝑛𝑖

𝑛
𝑖=1

∑ 𝑛𝑖
𝑘
í=1

=  ∑(𝑥𝑖 − 𝑥̅)2𝑝𝑖

𝑘

𝑖=1

 (5.27) 

Kde: 𝑥𝑖 … hodnota znaku nebo středy intervalů hodnot (aritmetický průměr mezních 

hodnot znaků), pro i = 1, 2, 3, …., n, 

 𝑛𝑖 … absolutní četnost znaku v jednotlivých kategoriích, pro i = 1, 2, 3, …., k, 

 𝑝𝑖 … relativní četnost znaku v jednotlivých kategoriích, pro i = 1, 2, 3, …., k, 

 𝑘 … počet kategorií. 

Vlastnosti rozptylu 

Jestliže se ke všem individuálním hodnotám znaku přičte nebo odečte konstanta 𝐴,  rozptyl se 

nezmění. 

Jestliže se všechny individuální hodnoty znaku násobí nebo vydělí konstantou 𝐴, je rozptyl 

počítaný z upravených hodnot 𝐴2- krát větší (nebo menší) než rozptyl počítaný z původních 

hodnot. 

Rozptyl je minimální průměrnou čtvercovou odchylkou, což znamená, že rozptyl kolem 

libovolné hodnoty a (𝐴 ≠ 𝑥̅) znaku 𝑋 je vždy větší, než rozptyl kolem aritmetického průměru. 

Je-li znak konstantní, je rozptyl roven nule. Rozptyl proměnlivého znaku je vždy kladný. 

Výše uvedené vzorce pro výpočet rozptylu (5.28; 5.29) se používají jen v popisné statistice 

obecně k určení proměnlivosti statistického souboru. Pokud však provádíme statistické 

usuzování a odhadujeme rozptyl neznámé náhodné veličiny z výběrového souboru, je nutné 

použít upravený vzorec pro zobecnění, tzv. výběrový rozptyl. Takto vypočtený výběrový 
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rozptyl je nestranným odhadem skutečné hodnoty rozptylu neznámé náhodné veličiny (viz 

kapitola Teorie odhadu). 

Obrázek 5.4: Grafické znázornění četností proměnných odlišných ve variabilitě N(0,1) 
 

 

 

 

 

 

 

 

Rozptyl se obvykle nepoužívá k přímému měření variability, ale jako charakteristika, která 

umožňuje aplikaci složitějších statistických metod. Rozptyl se uvádí ve čtvercích měrných 

jednotek hodnot sledovaných proměnných. Při praktickém rozboru variability používáme 

směrodatnou odchylku. 

Směrodatná odchylka 𝑺  je nejpoužívanější charakteristikou variability, která je 

definována jako kladná druhá odmocnina rozptylu. Rozměr (jednotky) směrodatné odchylky je 

stejný jako rozměr veličiny, což je její hlavní výhodou oproti rozptylu.  

U souboru s normálním rozdělením četností platí, že v určitých intervalech, které jsou dány 

násobky směrodatné odchylky kolem aritmetického průměru, je určitá část hodnot sledované 

náhodné veličiny (viz kapitola Číselné charakteristiky náhodných veličin). 

𝑆 = √𝑆2 
(5.28) 

RELATIVNÍ míry variability 

Míry relativní variability jsou bezrozměrná čísla, obvykle se udávají v procentech. Umožňují 

srovnávání variability proměnných, které jsou vyjádřené v různých měrných jednotkách.  

Variační koeficient 𝑽  je definován jako poměr směrodatné odchylky a průměru. Není 

ovlivněn absolutními hodnotami sledovaného statistického znaku. Je vhodný pro porovnávání 

variability dvou či více souborů s odlišnou úrovní hodnot (např. variabilita příjmů  

v Kč s variabilitou objemu produkce v kg). V takovýchto případech míra variability odstraňuje 

vliv obecné úrovně daných hodnot. 

𝑉 =
𝑆

𝑥̄
⋅ 100 (5.29) 
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MÍRY TVARU 

Mezi charakteristiky tvaru rozdělení, které jsou založené na momentových charakteristikách, 

patří koeficienty šikmosti a špičatosti, které byly podrobně popsány v kapitole Číselné 

charakteristiky náhodných veličin.  Zde si pro připomenutí uvedeme jejich definici a mezní 

hodnoty.  

Koeficient šikmosti 𝒎𝟑 popisuje soubor hodnot proměnné z hlediska koncentrace nízkých 

a vysokých hodnot v porovnání se symetrickým rozdělením četností. Vyjadřuje asymetrii 

rozložení hodnot proměnné kolem jejího průměru (obr. 5.5). 

 𝑚3 =  
𝑛

(𝑛 − 1)(𝑛 − 2)
∑ (

𝑥𝑖 − 𝑥̅

𝑆
)

3𝑛

í=1

 (5.30) 

Kde: 𝑥𝑖 … hodnota znaku, pro i = 1, 2, 3, …., n, 

 𝑥̅ …. aritmetický průměr, 

 𝑆 …. směrodatná odchylka, 

 𝑛 …. celkový rozsah souboru. 

Obrázek 5.5: Grafické znázornění šikmosti 

 

 

 

 

 

 

 

 

 

 

 

 

Šikmost rozdělení posuzujeme následovně (obr. 5.5):  

𝑚3 =  0  nulová šikmost (znamená symetrické rozdělení hodnot nalevo a napravo od 

střední hodnoty),  

𝑚3 >  0  kladná hodnota signalizuje levostrannou (odtud kladnou) asymetrii.  

To znamená vyšší koncentraci podprůměrných hodnot v porovnání s koncentrací hodnot 

nadprůměrných, převažují zde hodnoty menší než průměr, 

𝑚3 <  0  záporná hodnota vypovídá o pravostranné (a tedy záporné) asymetrii.  

To znamená vyšší koncentraci nadprůměrných hodnot v porovnání s koncentrací hodnot 

podprůměrných, převažují zde hodnoty větší než průměr. 



 

92 

 

Koeficient špičatosti 𝒎𝟒    popisuje soubor hodnot sledované proměnné z hlediska 

koncentrace hodnot v souboru kolem střední hodnoty.  

 𝑚4 =  
𝑛(𝑛 + 1)

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
∑ (

𝑥𝑖 − 𝑥̅

𝑆
)

4𝑛

í=1

 (5.31) 

Kde: 𝑥𝑖 … hodnota znaku, pro i = 1, 2, 3, …., n, 

 𝑥̅ …. aritmetický průměr, 

 𝑆 …. směrodatná odchylka, 

 𝑛 …. celkový rozsah souboru. 

Korigovaný koeficient špičatosti 𝒎𝟒    umožňuje porovnat rozdělení sledované proměnné 

s normálním pravděpodobnostním rozdělením (obr. 5.6). 

 𝑘𝑢𝑟𝑡 =  𝑚4 =  
𝑛(𝑛 + 1)

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
∑ (

𝑥𝑖 − 𝑥̅

𝑆
)

4

−
3(𝑛 − 1)2

(𝑛 − 2)(𝑛 − 3)

𝑛

í=1

 (5.32) 

Kde: 𝑥𝑖 … hodnota znaku, pro i = 1, 2, 3, …., n, 

 𝑥̅ …. aritmetický průměr, 

 𝑆 …. směrodatná odchylka, 

 𝑛 …. celkový rozsah souboru. 

 

Obrázek 5.6: Grafické znázornění špičatosti  

 

 

 

 

 

 

 

Špičatost rozdělení posuzujeme následovně (obr. 5.6):  

𝑘𝑢𝑟𝑡 =  0  nulová špičatost. Nulová hodnota koeficientu špičatosti znamená, že 

rozdělení proměnné má tvar Gaussovy křivky – odpovídá normálnímu rozdělení, 
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𝑘𝑢𝑟𝑡 > 0  kladná špičatost znamená, že většina hodnot náhodné veličiny leží blízko její 

střední hodnotě. Křivka rozdělení náhodné veličiny je špičatější a hlavní vliv na rozptyl mají 

málo pravděpodobné odlehlé hodnoty, 

𝑘𝑢𝑟𝑡 < 0  záporná špičatost znamená, že rozdělení je rovnoměrnější a jeho křivka je 

plošší. 

 

Příklad 5.2 

Na základě datové matice „Notebooky“ o rozsahu 150 jednotek, kterou naleznete v kurzu  

v Moodle, budeme prezentovat základní zpracování dat pomocí metod z popisné  

a průzkumové analýzy dat. 

Datový soubor obsahuje celkem 16 proměnných, které můžeme rozdělit následovně: 

1 slovní proměnná: značka notebooku. 

1 identifikační proměnná: ID notebooku. 

7 kvantitativních proměnných: cena, úhlopříčka apod. 

7 kvalitativních proměnných: barva, grafická karta apod. 

Tento vzorový příklad nám pomůže nejen lépe porozumět vlastnostem datového souboru,  

ale zároveň poslouží jako základ pro procvičování a demonstraci dalších metod, se kterými 

se budeme v průběhu kurzu seznamovat. 
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Pokračování příklad 5.2 

Nyní se budeme podrobněji věnovat zpracování jednotlivých typů proměnných. 

a) V prvním kroku se zaměříme na zpracování nominální proměnné „Barva“.  

SPSS Analyze → Descriptive Statistics → Frequencies → proměnná Barva do okna 

Variable(s) → Statistics → Continue → Charts → Continue → OK 

 

 

 

 

 

 

 

 

 

 

Řešení 
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Pokračování příklad 5.2 

b) V druhém kroku se zaměříme na zpracování ordinální proměnné „Ram“. 

SPSS Analyze → Descriptive Statistics → Frequencies → proměnná Ram do okna 

Variable(s) → Statistics → Continue → Charts → Continue → OK 

 

 

 

 

 

 

 

 

Řešení 
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Pokračování příklad 5.2 

c) Ve třetím kroku se zaměříme na zpracování kvantitativní proměnné „Cena“. 

SPSS Analyze → Descriptive Statistics → Explore → do okna Dependent List: 

proměnná Cena → Plots → Normality plots with tests → Continue → OK 

 

 

 

 

 

 

 

Řešení 
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5.3 Průzkumová analýza datových souborů 

Průzkumová analýza (EDA – Exploratory Data Analysis) umožňuje popsat důležité vlastnosti 

datového souboru stejně jako statistika popisná. Rozdíl mezi průzkumovou a popisnou 

analýzou není tolik v použitých metodách, jako ve formě jejich zpracování.  

Cílem průzkumové analýzy je popsat statistické zvláštnosti dat a ověřit předpoklady  

o výběru, ze kterého pocházejí. Většina postupů průzkumové analýzy dat je založena na 

základních popisných charakteristikách a na grafických metodách, které lze efektivně provádět 

pouze s použitím statistických programů.  

K popisu dat se využívají především robustní kvantilové charakteristiky, jejichž základem 

je pořádková statistika, která pracuje s vzestupně seřazenými hodnotami datové proměnné.  

Robustnost metody lze vyjádřit jako odolnost metody vůči malým změnám či odchylkám  

v postupu nebo v parametru modelu. U robustních metod není vliv vybočujících hodnot na 

výsledky analýzy tak výrazný.  Robustnost poskytuje informaci o spolehlivosti modelu.  

Čím je metoda odolnější proti vlivu chyb, tím je robustnější. 

5.3.1 Statistické zvláštnosti dat 

Nejprve se zaměříme na grafické metody průzkumové analýzy dat, které jsou zaměřeny na 

identifikaci vybočujících pozorování a stupně rozložení šikmosti a špičatosti dat.  

Histogram je jeden z nejpoužívanější nástrojů prezentace kvantitativní proměnné (obr. 

5.7). Každý sloupec a výška tohoto sloupce v histogramu znázorňuje četnost výskytu daného 

znaku. Na rozdíl od sloupcového grafu, v němž jsou při zobrazování četností kategorií pro jednu 

proměnnou sloupce oddělené, jsou v histogramu sloupce umístěny těsně vedle sebe. 

Obrázek 5.7: Histogramy  

     Kvantitativní diskrétní proměnná        Kvantitativní spojitá proměnná 
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U diskrétní proměnné je na vodorovné ose znázorněna četnost výskytu vztažená k variantě 

znaku sledované proměnné. U spojitých proměnných jsou na vodorovné ose znázorněny stejně 

široké, vzájemně navázané (disjunktivní) intervaly sledované proměnné (pravidla pro stanovení 

počtu intervalů vztahy 5.5 a 5.6). Nevýhodou tohoto grafu je, že v případě nevhodného 

stanovení počtu intervalů (sloupců) jsou jeho interpretační možnosti značně omezené. 

Výhodou histogramu je jeho jednoduchost, někdy nám však chybí informace o konkrétních 

hodnotách proměnné.  

Grafem, který je doplněn o základní číselné charakteristiky je box-plot neboli krabicový 

graf. Tento graf zobrazuje data ve tvaru obdélníkové krabice, která je doplněna tzv. vousy  

(obr. 5.8).   

Obrázek 5.8:  Box-plot 

 

 

 

 

 

 

 

 

Jednotlivé části krabicového grafu odpovídají pětičíselnému souhrnu kvantilových 

charakteristik (minimum, maximum, medián, dolní a horní kvartil), které podávají rychlou 

a přehlednou informaci o poloze, variabilitě a případném asymetrickém rozložení hodnot 

zkoumaného statistického souboru.   

Horní hranice krabice je ohraničena 75% kvantilem a dolní hranici tvoří 25% kvantil. 

Tyto dva kvartily odpovídají kvartilovému rozpětí, které ohraničuje 50 % pozorovaných 

údajů. Z hodnot kvartilů lze usuzovat na velikost variability zobrazeného souboru, početně 

vyjádřenou interkvartilovým rozpětím (vztah 5.15). Uprostřed krabice je bodem nebo 

svislou příčkou označen medián, tedy 50% kvantil.  

V případě symetricky rozdělených dat je medián přesně uprostřed krabice a v takovém 

případě data odpovídají normálnímu rozdělení.  

Vousy, které vybíhají z krabice, signalizují míru asymetrie rozložení dat. Data jsou 

asymetrická v případě, kdy je jeden vous (úsečka vycházející z krabice) větší než druhý. 
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 Koncové úsečky na vousech označují maximální a minimální „nevybočující“ hodnoty 

proměnné.  

Hodnoty, které se nacházejí mimo grafické znázornění krabice a v grafu jsou vyobrazeny 

jako izolované body, jsou považovány za odlehlá (vybočující) pozorování. 

Shodu kvantilů výběrového (empirického) rozdělení s vybraným teoretickým rozdělením 

nám umožňuje posoudit Kvantil-kvantilový graf (𝑸 − 𝑸 graf). Princip jeho sestrojení spočívá 

ve vzestupném uspořádání naměřených hodnot v porovnání s hodnotami stanovenými pomocí 

pravděpodobnostní funkce zvoleného rozdělení (obr. 5.9).  

V případě, že výběrové rozdělení plně odpovídá teoretickému, je grafem přímka. Jakékoli 

odchylky naměřených hodnot od přímky znamenají odchylky od předpokládaného teoretického 

rozdělení. Graf 𝑄 − 𝑄  lze sestrojit pro různá rozdělení, pouze se jinak stanovují příslušné 

hodnoty na ose 𝑥 (hodnoty teoretického kvantilu 𝑄𝑇) a ose 𝑦 (hodnoty empirického kvantilu 

𝑄𝐸). 

Obrázek 5.9: 𝑸 − 𝑸 graf   Obrázek 5.10: 𝑷 − 𝑷 graf 

 

 

 

 

 

 

 

 

 

Výstupem podobný předcházejícímu 𝑄 − 𝑄 grafu, jen graf 𝐆𝐫𝐚𝐟 𝑷 − 𝑷 (obr. 5.10) ve 

kterém jsou na osách 𝑥 a 𝑦 vykresleny empirické a teoretické kumulativní četnosti.  

Grafy 𝑃 − 𝑃 a 𝑄 − 𝑄 se vzájemně doplňují. Grafy 𝑃 −  𝑃 jsou citlivé na odchylky od 

teoretického rozdělení ve střední části – v okolí modu. Grafy 𝑄 −  𝑄 jsou citlivé na odchylky 

od teoretického rozdělení v oblasti konců. 

 

 

 

 

 



 

100 

 

Příklad 5.3   

Pro ilustraci provedení a interpretace uvedených metod průzkumové analýzy dat byly 

vybrány tři proměnné s různým rozložením dat. Na základě níže uvedených 

pravděpodobnostních grafů provedeme vizuální kontrolu předpokladů o datech a jejich 

rozdělení – průzkumovou analýzu. Pomocí základních číselných charakteristik posoudíme 

kvalitu dat – popisnou statistiku. 

Průzkumová analýza  
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Tepová frekvence po sportu7 
Histogram
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Popisná statistika 
Průměr 6,803 

Medián 7 

Minimální 0 

Maximál. 14 

Rozpětí 14 

Kvartil 3 

Sm.odch. 2,340 

Var.koef. 34,404 

Šikmost -0,108 

Špičatost 0,493 
 

Průměr 4,721 

Medián 4 

Minimální 0,5 

Maximál. 16 

Rozpětí 15,5 

Kvartil 2 

Sm.odch. 2,950 

Var.koef. 62,487 

Šikmost 1,747 

Špičatost 3,078 
 

Průměr 87,221 

Medián 90 

Minimální 55 

Maximál. 102 

Rozpětí 47 

Kvartil 15 

Sm.odch. 11,604 

Var.koef. 13,304 

Šikmost -1,042 

Špičatost 0,392 
 

 
5 Data vykazují dobrou shodu, která je například v grafu Q-Q indikována tím, že jednotlivé body 

(kvantily) leží těsně kolem přímky. Odchylku vykazuje pouze jedna nejvyšší a jedna nejnižší 

hodnota. Můžeme tedy předpokládat, že vzhledem k velikosti výběru (𝑛=104) nebudou mít tyto 

body větší vliv na normalitu rozložení dat. Oba uvedené grafy potvrzují typické vlastnosti 

normálního rozdělení. Srovnání mediánu a aritmetického průměru indikuje velmi dobrou shodu, což 

je typické právě pro normální rozdělení nebo symetrická rozdělení blízká normálnímu. 

6 Z grafů vyplývá, že rozdělení dat je špičatější a neodpovídá průběhu normálního rozdělení. 

Předpokládáme, že hlavní vliv na rozptýlenost mají spíše méně odlehlé hodnoty. 
7 Jedná se o předpoklad špičatosti, a především levostranné nesouměrnosti (šikmosti).  
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Shrnutí kapitoly 

Popisná statistika společně s průzkumovou analýzou v sobě zahrnují vzájemně provázanou 

skupinu základních metod, které slouží k prvotnímu posouzení kvality dat.  

Popisná statistika se zabývá uspořádáním souborů, jejich popisem a početními postupy, 

které poskytují souhrnné informace o vlastnostech analyzovaného datového souboru. Úkolem 

popisné statistiky je tabelování a číselný popis datového soubor. 

                   Proměnné 

Míry 

Nominální Ordinální Kvantitativní 

Polohy Modus Modus Modus 

  Medián Medián 

   Průměry 

Variability absolutní Variační poměr Interqvartilové rozpětí Variační rozpětí 

 Modální rozptyl Ordinální rozptyl Rozptyl 

   Směrodatná odchylka 

Variability relativní   Variační koeficient 

Tvaru   Šikmost a špičatost 

Úkolem průzkumové analýzy je odhalit zvláštnosti v chování dat a ověřit předpoklady, 

které data musí splňovat (tj. nezávislost, homogenitu a normalitu). Pro průzkumovou analýzu 

je stěžejní grafické zobrazení dat. Při posuzování dat je vhodné kombinovat obě výše uvedené 

metody. Věcná znalost řešené problematiky představuje nenahraditelnou podmínku pro získání 

kvalitních výsledků a jejich následnou interpretaci.  

Literatura 

BUDÍKOVÁ, Marie; Maria KRÁLOVÁ a Bohumil MAROŠ. Průvodce základními 

statistickými metodami. vydání první. Praha: Grada Publishing, a.s., 2010. ISBN 978-80-247-

3243-5. 

CAMM, Jeffrey; James COCHRAN, David ANDERSON, Dennis SWEENEY, Thomas 

WILLIAMS et al. Statistics for Business and Economics. 15th Edition. Boston: Cengage 

Learning, 2023. ISBN 978-0357715857. 

HINDLS, Richard; Stanislava HRONOVÁ, Jan SEGER a Jakub FISCHER. Statistika pro 

ekonomy. 8. vyd. Praha: Professional Publishing, 2007. ISBN 978-80-86946-43-6. 

MELOUN, Milan, Jiří MILITKÝ a Martin HIL. Statistická analýza vícerozměrných dat v 

příkladech. Vyd. 2. Praha: Academia, 2012. ISBN 978-80-2002-071-0. 

ŘEZANKOVÁ, Hana a Tomáš LÖSTER. Základy statistiky. Vyd. 1. Praha: Oeconomica, 

2013. ISBN 978-80-245-1957-9. 
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5 Kontrolní otázky 

1. Jaké jsou hlavní etapy statistické práce a co je jejich cílem?  

2. Co je statistická jednotka? Uveďte příklad. 

3. Co je statistický znak? 

4. Co je cílem grafického znázornění?  

5. Jaký je rozdíl mezi absolutní a relativní četností?  

6. Definujte nominální a ordinální proměnnou. Uveďte příklady.  

7. Jaký je rozdíl mezi diskrétními a spojitými kvantitativními proměnnými?  

8. Jak dělíme číselné charakteristiky proměnných?  

9. Co jsou charakteristiky polohy a jakou informaci nám poskytují?  

10. Jaký je rozdíl mezi absolutními a relativními charakteristikami variability?  

11. Co je modus a medián. Vysvětlete pojem robustnost. 

12. Které grafy jsou vhodné pro zobrazení kvantitativních diskrétních proměnných a které 

pro nespojité, nominální a ordinální proměnné? 

13. Jak se dělí charakteristiky variability a jaký je mezi nimi rozdíl? 

14. Jaké znáte absolutní charakteristiky míry variability?  

15. Co udává variační koeficient a proč je vhodný pro srovnání variability různých souborů? 

16. K čemu slouží krabicový graf (box-plot) a jaké informace z něj můžeme vyčíst? 

17. Proč je důležité správně klasifikovat proměnné před statistickým zpracováním? 
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5 Příklady k procvičení 

Použijte datovou matici „Byty“ kterou naleznete v kurzu Moodle, a odpovězte na následující 

otázky. 

5.1 Nominální proměnné 

5.1.1 Pracujte s proměnnými Město a Výtah. 

a) Vytvořte tabulku rozdělení četností. 

b) Vytvořte vhodný graf, který vizuálně ukáže podíl bytů v jednotlivých městech. 

c) Určete modus u obou proměnných. 

d) Vytvořte graf, který bude prezentovat průměrnou plochu bytu v závislosti na městě 

ve kterém se byt nachází.  

 

5.2 Ordinální proměnné 

5.2.1 Pracujte s proměnnými Dispozice a Patro. 

a) Vytvořte tabulku rozdělení četností.  

b) Vytvořte sloupcový graf pro proměnnou Dispozice.  

c) Jaký závěr lze z grafu vyvodit o nabídce bytů na trhu?  

d) Jaké charakteristiky polohy jsou vhodné pro proměnné Dispozice a Patro? 

e) Vytvořte graf, který bude prezentovat průměrnou cenu nájmu v závislosti na 

dispozici bytu.  

 

5.3 Kvantitativní proměnné 

5.1.1 Pracujte s proměnnými Cena a Plocha.  

a) Vypočítejte a interpretujte vhodné charakteristiky polohy a variability pro 

proměnnou Cena. 

b) Vytvořte histogram pro proměnnou Cena. Posuďte, zda data vykazují symetrické 

rozdělení. 

c) Vypočítejte, jaká je průměrná Cena nájmu v Praze pro bytu 2+kk? 

d) Vypočítejte vhodné charakteristiky polohy pro proměnnou Plocha. Co vám tyto 

hodnoty říkají o velikosti bytů? 

e) Vytvořte krabicový graf (box-plot) pro proměnnou Plocha. Identifikujte  

a interpretujte případná odlehlá pozorování. 
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6 NÁHODNÝ VÝBĚR 

Dosud jsme se věnovali popisné statistice, která nám umožňuje shrnout a vizualizovat data,  

a teorii pravděpodobnosti, která nám dává nástroje pro pochopení chování náhodných jevů. 

Tyto teoretické základy jsou nezbytným předpokladem pro přechod k matematické statistice, 

která se zabývá zevšeobecňováním.  

Abychom mohli efektivně usuzovat na vlastnosti celého základního souboru (populace), 

musíme nejprve pochopit, jak z něj získáváme data. Slouží k tomu náhodný výběr, který  

je tvořen náhodnými veličinami, které jsou spojeny s libovolným náhodným pokusem. 

Náhodný výběr z cílové populace 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑘),  je vektor nezávislých náhodných 

veličin (𝑘-náhodných výběrů) stejného typu rozdělení. Realizací náhodného výběru 𝑋 získáme 

hodnoty 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛, kde 𝑥  jsou nazývány „pozorování“ (reálná čísla) a 𝑛 je rozsah 

výběru. Tyto konkrétní hodnoty tvoří datový soubor (neboli výběrový soubor). 

 

Příklad 6.1 

Chceme získat informace o průměrné spotřebě paliva u všech vozidel určité značky (např. 

Škoda) a modelu (např. Octavia), které byly vyrobeny v roce 2023. 

Řešení 

Základní soubor (populace): Všechny vozy Škoda Octavia vyrobené v roce 2023. Tento 

soubor je tak rozsáhlý, že není možné změřit spotřebu u každého jednotlivého vozu. 

Náhodný pokus: Vybereme jeden vůz z populace a změříme jeho spotřebu paliva na 

standardní trase 100 km. Výsledek tohoto měření je náhodná veličina, protože se může 

mírně lišit v závislosti na řidiči, stavu vozovky, počasí a dalších faktorech. 

Náhodný výběr: Protože nemůžeme změřit všechny vozy, provedeme náhodný výběr. 

Vybereme například 500 vozů. Těchto 500 měření spotřeby představuje náš náhodný 

výběr. Každé jednotlivé měření (𝑥1, 𝑥2, … , 𝑥500) je nezávislá náhodná veličina, která 

pochází ze stejného rozdělení jako spotřeba celé populace vozů. 

Realizace náhodného výběru: Když skutečně provedeme měření, získáme konkrétní 

číselné hodnoty například 5,2l/100 km; 5,5l/100 km; 5,0l/100 km atd. Tento soubor  

500 hodnot je realizací náhodného výběru (nebo datovým souborem). Právě s těmito 

konkrétními hodnotami budeme pracovat v praktické části statistiky. 
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6.1 Výběrové charakteristiky 

Vlastnosti populace definujeme pomocí populačních (teoretických) charakteristik neboli 

parametrů (např. střední hodnota, rozptyl), které popisují určitou vlastnost základního 

souboru. Jsou to konstantní hodnoty, které v případě, že neznáme rozdělení pozorované 

náhodné veličiny, nedokážeme většinou přesně určit.  

  Tabulka 6.1: Značení populačních a výběrových charakteristik 

 Populační 

parametr 

(Teorie pravděpodobnosti) 

Populační  

parametr 

(Matematická statistika) 

Výběrová 

charakteristika 

(Popisná statistika) 

Průměr 𝐸(𝑋) 𝜇 𝑥̅ 

Medián 𝑄0,5(𝑋) 𝜇 𝑥̃ 

Rozptyl  𝐷(𝑋)  𝜎2 𝑆2  

Směrodatná 

odchylka 
√𝐷(𝑋) 𝜎 𝑆 

Relativní četnost 𝑃 𝜋 𝑝 

Z výběrových dat však můžeme populační parametry odhadnout. Na základě výběrových 

pozorování vypočítáme empirickou charakteristiku neboli statistiku, kterou obecně značíme 

𝑇(𝑋) a konkrétně ji značíme písmeny z latinky.  

Statistika 𝑇→ 𝑇(𝑋 = 𝑥) je funkcí náhodného výběru a v určitém pravděpodobnostním 

smyslu ji lze chápat, jako číselnou hodnotu, která nám umožňuje přiblížit se skutečné hodnotě 

populačního parametru anebo jako hodnotu, která nám charakterizuje stupeň nesouladu mezi 

předpokladem o datech (charakteristikách náhodných veličin) a hodnotami, které získáme na 

základě výběrových šetření.  

Kritéria a metody výpočtu výběrové statistiky, se odvozují z charakteru rozdělení náhodné 

veličiny a vychází z principů Centrální limitní věty (CLV). Ta říká, že náhodná veličina, která 

vznikne jako součet dostatečně velkého počtu8 vzájemně nezávislých náhodných veličin, má 

za velmi obecných podmínek přibližně normální rozdělení, a to bez ohledu na to, jaké bylo 

původní rozdělení těchto veličin. 

 

 

 

 

 
8 Neexistuje žádná konkrétní hodnota pro dostatečný počet. Běžně se však setkáváme s pravidlem, že výběry  

o rozsahu 30 a větším jsou považovány za dostatečně velké pro platnost centrální limitní věty, a to i když je toto 

pravidlo spíše zjednodušením, které se ustálilo pro potřeby ručních výpočtů v minulosti. 
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  Tabulka 6.2: Výběrové rozdělení náhodných veličin 

Rozdělení Parametr Kvantil 

Normální (Gausovo) 𝑋~𝑁(𝜇,  𝜎2)  

Normované normální rozdělení 𝑋~𝑁(0; 1) 𝑢𝛼 

Alternativní rozdělení 𝑋~𝐴(𝜋)  

Aproximace na normované normální 𝑋~𝐴(𝜋)~𝑁(0; 1) 𝑢𝛼 

𝑪𝒉í-kvadrát rozdělení 𝑋 ~ 𝜒2(𝜈) 
 

𝜒𝛼
2(𝜈) 

Studentovo t-rozdělení 𝑋~  ~ 𝑡(𝜈)  
 

𝑡𝛼(𝜈) 

Fisher-Snedecorovo-rozdělení 𝑋~𝐹(𝜈1; 𝜈2) 𝐹𝛼(𝜈1; 𝜈2) 

Uvedené koncepty nám umožňují přejít k praktickému modelování nejdůležitějších 

charakteristik náhodného výběru (statistik), které budeme využívat k odhadu neznámých 

populačních parametrů a k testování hypotéz o populaci s použitím reálných dat. 

Přehled nejpoužívanějších výběrových charakteristik a jejich rozdělení 

JEDEN NÁHODNÝ VÝBĚR 

Modelování PRŮMĚRU  

Známe populační rozptyl 𝝈𝟐  

𝒏 > 𝟑𝟎 
𝑼 =

𝑿̅ − 𝝁

𝝈
√𝒏  ~ 𝒖𝜶 (6.1) 

Neznáme populační rozptyl 𝝈𝟐  

𝒏 > 𝟑𝟎 
 𝑼 =

𝑿̅ − 𝝁

𝑺
√𝒏  ~ 𝒖𝜶 (6.2) 

Neznáme populační rozptyl 𝝈𝟐 

 

𝒏 < 𝟑𝟎 
𝑻 =

𝑿̅ − 𝝁

𝑺
√𝒏  ~ 𝒕𝜶(𝒏−𝟏) (6.3) 

Modelování ROZPTYLU 

 
𝑲 =

𝒏 − 𝟏

𝝈𝟐
𝒔𝟐   ~  𝝌𝜶(𝒏−𝟏)

𝟐  (6.4) 

Modelování RELATIVNÍ ČETNOSTI 

𝒏 >
𝟗

𝒑(𝟏 − 𝒑)
 𝑷 =

𝒑 − 𝝅

√𝝅(𝟏 − 𝝅)
√𝒏  ~ 𝒖𝜶 (6.5) 
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DVA NEZÁVISLÉ NÁHODNÉ VÝBĚRY 

Zkoumáme rozdílnost hodnot náhodné veličiny pozorované v různých podmínkách.  

Modelování PRŮMĚRŮ  

Známe populační rozptyl 𝝈𝟐  

𝑼(𝑿̅−𝒀̅) =
(𝑿̅ − 𝒀̅) − (𝝁𝟏 − 𝝁𝟐)

√𝝈𝟏
𝟐

𝒏𝟏
+

𝝈𝟐
𝟐

𝒏𝟐

     ~ 𝒖𝜶 
(6.6) 

Neznáme rozptyl, ale 𝝈𝟏
𝟐 = 𝝈𝟏

𝟐  

𝑻(𝑿̅−𝒀̅) =
(𝑿̅ − 𝒀̅) − (𝝁𝟏 − 𝝁𝟐)

√𝑺𝟏
𝟐(𝒏𝟏 − 𝟏) + 𝑺𝟐

𝟐(𝒏𝟐 − 𝟏)

√
𝒏𝟏𝒏𝟐(𝒏𝟏 + 𝒏𝟐 − 𝟐)

𝒏𝟏 + 𝒏𝟐
 ~ 𝒕𝜶(𝒏𝟏+𝒏𝟐−𝟐) (6.7) 

Neznáme rozptyl, ale 𝝈𝟏
𝟐 ≠ 𝝈𝟏

𝟐  

𝑻(𝑿̅−𝒀̅) =
(𝑿̅−𝒀̅)−(𝝁𝟏−𝝁𝟐)

√
𝑺𝟏

𝟐

𝒏𝟏
+

𝑺𝟐
𝟐

𝒏𝟐

 ~ 𝒕𝜶(𝝂), kde 𝝂 ≅
(

𝑺𝟏
𝟐

𝒏𝟏
+

𝑺𝟐
𝟐

𝒏𝟐
)

𝟐

(
𝑺𝟏

𝟐

𝒏𝟏
)

𝟐
𝟏

𝒏𝟏−𝟏
+(

𝑺𝟐
𝟐

𝒏𝟐
)

𝟐
𝟏

𝒏𝟐−𝟏

 (6.8) 

Modelování ROZPTYLŮ  

 
𝑭 =  

𝑺𝟏
𝟐

𝝈𝟏
𝟐

/ 
𝑺𝟐

𝟐

𝝈𝟐
𝟐

 ~  𝑭𝒏𝟏−𝟏;𝒏𝟐−𝟏  (6.9) 

Modelování RELATIVNÍCH ČETNOSTÍ  

(𝒏𝟏 >
𝟗

𝒑𝟏(𝟏 − 𝒑𝟏)
) 

(𝒏𝟐 >
𝟗

𝒑𝟐(𝟏 − 𝒑𝟐)
) 

𝑷𝑷𝟏−𝑷𝟐
 =

(𝑷𝟏 − 𝑷𝟐) − (𝝅𝟏 − 𝝅𝟐)

√
𝝅𝟏(𝟏 − 𝝅𝟏)

𝒏𝟏
+

𝝅𝟐(𝟏 − 𝝅𝟐)
𝒏𝟐

  ~ 𝒖𝜶 
(6.10) 

DVA ZÁVISLÉ NÁHODNÉ VÝBĚRU 

Párové pozorování je charakterizováno jedním náhodným výběrem z dvourozměrného 

rozložení. Párem se rozumí dvojice rozdílných pozorování u jedné statistické jednotky. 

Modelování PRŮMĚRŮ  

𝑻(𝑿̅−𝒀̅) =
𝑿̅𝒅−(𝝁𝟏−𝝁𝟐)

𝑺𝒅
 √𝒏    ~ 𝒖𝜶,   

kde: 𝑋̅𝑑 =
1

𝑛
 ∑ 𝑑𝑖

𝑛
𝑖=1   …. průměr diferencí, kde: 𝑑𝑖 = 𝑥1𝑖 − 𝑥2𝑖 pro 𝑖 = 1, … , 𝑛. 

              𝑆𝑑
2 =  

1

𝑛−1
∑ (𝑑𝑖 − 𝑑)2𝑛

𝑖=1   

(6.11) 
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6.2 Statistická indukce 

Postup, kterým na základě výběrových údajů činíme úsudky o charakteru dat v základním 

souboru, se nazývá statistická indukce. 

Jejím hlavním úkolem je zevšeobecnění, které nám umožňuje na základě zkoumání dat  

z reprezentativního výběru učinit závěry o vlastnostech a chování celého základního souboru 

(populace). Tento induktivní způsob myšlení znamená, že na základě znalostí konkrétních 

vlastností dat odvozujeme a usuzujeme na jejich obecné vlastnosti. Jak už bylo mnohokrát 

řečeno, ve většině případů je základní soubor tvořen velkým počtem jedinců, a není proto 

možné získat všechny informace o jejich vlastnostech. Na vlastnosti populace usuzujeme na 

základě údajů získaných z podmnožiny jedinců, tedy z výběrového souboru. 

  Obrázek 6.1: Postup statistického usuzování 

 

 

 

 

 

 

 

Obor statistické indukce je zaměřen na řešení dvou základních úloh: 

▪ Odhad populačních rozdělení a jejich parametrů. 

▪ Testování statistických hypotéz o populačních parametrech a rozdělení populace. 

V případě, že úsudky o datech jsou založeny na určitých předpokladech o rozdělení 

náhodných veličin (např. že data jsou normálně rozdělená a hledáme parametry 𝑁(𝜇, 𝜎2), 

hovoříme o parametrických metodách zpracování. Jestliže neznáme typ rozdělení a jeho 

parametry, pak popisujeme vlastnosti dat získaných na základě výběru pomocí 

neparametrických metod. 

 

 

POPULAČNÍ PARAMETRY  
rozdělení   

Výběrové ZJIŠTOVÁNÍ  

            DATA 

𝑿𝟏 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 

  

 

𝑻(𝑿) → 𝐒𝐓𝐀𝐓𝐈𝐒𝐓𝐈𝐊𝐀 

 

ZPRACOVÁNÍ 

INDUKCE → ODHADY; TESTOVÁNÍ 

        

ODHADOVANÁ 

charakteristika VÝBĚROVÉ 

charakteristiky 

𝑿𝟐 

𝑿𝟑 

NÁHODNÉ VÝBĚRY (výběrové soubory) CÍLOVÁ POPULACE (základní soubor) 
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Shrnutí kapitoly 

Matematická statistika navazuje na popisnou statistiku a teorii pravděpodobnosti s cílem 

zobecnit poznatky z dat. Umožňuje přejít od hypotetických modelů k analýze reálných dat. 

Náhodný výběr je tvořen nezávislými náhodnými veličinami, které mají stejný typ 

rozdělení. Jeho realizací jsou konkrétní číselné hodnoty, nazývané pozorování, které tvoří 

datový soubor. 

Populační (teoretické) charakteristiky neboli parametry popisují celou populaci a jsou 

to konstantní hodnoty. 

Výběrové charakteristiky neboli statistiky se vypočítávají z datového souboru. Jsou  

to náhodné veličiny a slouží k odhadu populačních parametrů 

Výpočet výběrových statistik vychází z principů centrální limitní větu (CLV). Ta říká, že 

průměr z dostatečně velkého počtu nezávislých náhodných veličin má přibližně normální 

rozdělení, a to bez ohledu na to, jaké bylo původní rozdělení těchto veličin. 

Statistická indukce je postup, kterým na základě údajů získaných z výběrového souboru 

činíme úsudky (odhadujeme, předpovídáme) o charakteru dat v celém základním souboru 

(populaci). Obor statistické indukce řeší dvě základní úlohy: 

Odhad populačních rozdělení a jejich parametrů. 

Testování statistických hypotéz o populačních parametrech a rozděleních populace. 
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6 Kontrolní otázky 

1. Vysvětlete rozdíl mezi základním souborem (populací) a náhodným výběrem.  

2. Jaký je rozdíl mezi populačními parametry a výběrovými charakteristikami?  

3. Co je to centrální limitní věta a k čemu slouží?  

4. Vysvětlete rozdíl mezi parametrickými a neparametrickými metodami zpracování dat.  

5. Vysvětlete rozdíl mezi dvouvýběrovým pozorováním (dvěma nezávislými náhodnými 

výběry) a párovým pozorováním (dvěma závislými náhodnými výběry).  

6. Co je charakteristické pro párové pozorování?  

7. Co je to statistická indukce a jaký je její hlavní úkol?  

8. Jaké dvě základní úlohy řeší obor statistické indukce?  

9. Jaký je rozdíl mezi parametrickými a neparametrickými metodami zpracování dat? 
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7 VÝBĚROVÉ ZJIŠŤOVÁNÍ 

Výběrové zjišťování představuje jednu z etap statistické činnosti, která je zaměřena na sběr 

dat. Problémem statistického zjišťování je reprezentativnost sledovaných údajů. V praxi 

nemáme většinou k dispozici všechny údaje vztahující se k analyzovanému problému.  

Základní soubory jsou často velmi rozsáhlé a v mnoha případech se setkáme jen 

s průzkumy, které se opírají o relativně malý počet zkoumaných jednotek. V takovém případě 

hovoříme o výběrových zjišťováních. Úkolem výběrových zjišťování je vytvoření 

reprezentativních souborů, které zaznamenávají charakteristické rysy populace9 – 

základního souboru dat.  

Číselné charakteristiky vypočítané z výběrových dat jsou podkladem pro odhady parametrů  

a testování hypotéz o tvaru rozdělení náhodných veličin – statistické usuzování (viz kapitola 

Teorie odhadu a Testování statistických hypotéz).  

Kvalita a integrita shromážděných údajů přímo ovlivňuje platnost a spolehlivost výsledků 

analýzy.  Aby byl výběrový soubor typickým (věrným) zástupcem základního souboru, musí 

být splněny určité požadavky. 

▪ Přesné definování základního souboru z hlediska znalosti základních rysů  

a homogenity (heterogenity) sledované populace. Jednoznačné vymezení toho, které případy 

do zkoumané populace spadají a které již nikoliv. Zvážení míry homogenity souboru. 

▪ Vhodná metoda výběru. Předpokladem kvalitních dat je pravděpodobnostní výběr. 

Všechny jednotky základního souboru by měly mít stejnou pravděpodobnost, že budou 

zařazeny do výběru.  

Znalost, a především splnění uvedených požadavků umožňuje provést odhad velikosti 

výběrového souboru, a následně lze s využitím statistických metod přistoupit k posouzení 

výběru z hlediska jeho reprezentativity. 

V kapitole Základní pojmy, byl uveden rozdíl mezi úplným (vyčerpávajícím) zjišťováním 

ve kterém je hodnota příslušného znaku zjišťována u všech statistických jednotek – základní 

soubor (populace) a neúplným (výběrovým) zjišťování, které je omezeno jen na část 

statistického souboru a na zkoumání jen některých statistických jednotek – výběrový soubor. 

Základní druhy výběrových zjišťování můžeme rozdělit do dvou skupin. První skupina 

metod v sobě zahrnuje nepravděpodobnostní/nenáhodné výběrové zjišťování. Druhá 

 
9 Populace v takovém to pojetí neznamená pouze množinu osob. Zkoumanými jednotkami mohou být stroje, 

podniky, města, školy, organizace, umělecká díla apod. Definování pojmu populace se odvíjí od tématu 

výzkumného zaměření.  
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skupina, která je základem celé teorie statistického usuzování, je založena na metodách 

pravděpodobnostního/náhodného výběrového zjišťování.  

7.1 Pravděpodobnostní výběrové zjišťování 

Pravděpodobnostní10  výběr je obecně považován za objektivní způsob výběru jednotek. 

Základní princip výběru spočívá v tom, že každá jednotka populace má nenulovou 

pravděpodobnost, že bude vybrána do výsledného vzorku. Tato skutečnost je důležitým 

předpokladem nestranné analýzy dat. Postup náhodných výběrových zjišťování vychází 

z principů matematické statistiky a teorie pravděpodobnosti.  

7.1.1 Prostý pravděpodobnostní výběr 

Základním typem pravděpodobnostního výběrů je prostý (jednoduchý) výběr. Jeho význam 

spočívá nejen ve snadném použití, ale také ve schopnosti vytvářet reprezentativní vzorky, které 

odrážejí skutečné vlastnosti populace.   

Prostý pravděpodobnostní výběr se obvykle provádí tak, že se celý soubor se rozdělí na 

tzv. výběrové jednotky, které jsou zpravidla totožné se statistickými jednotkami, a každé se 

přiřadí určitá pravděpodobnost jejího zahrnutí do výběrového souboru. O nezahrnutí či zahrnutí 

určité výběrové jednotky do výběrového souboru rozhoduje jen náhoda. Výhodou 

pravděpodobnostního výběru je, že vybrané jednotky, potažmo jejich charakteristiky, které jsou 

předmětem zkoumání, mají obdobné rozložení dat jako má výchozí populace.   

Mezi nejjednodušší techniky prostého výběru patří losování. Správné losování je spojeno 

s důkladným předchozím promícháním všech jednotek nebo jejich zástupců. V případě, kdy je 

technicky nemožné použití losování (např. při výběrech z velmi rozsáhlých základních 

souborů) využívá se pro výběr statistických jednotek tabulka náhodných čísel tzv. 

pseudonáhodných čísel generovaných počítačem (generátor náhodných čísel). Jednotky 

základního souboru mohou, ale zároveň nemusí mít možnost být vybrány opakovaně.  

Podle tohoto hlediska dělíme prostý náhodný výběr na výběr s vracením/opakováním  

a na výběr bez vracení/opakování. 

Při výběru s vracením/opakováním, je každá vybraná jednotka před dalším vybíráním 

vrácena zpátky do souboru, ze kterého vybíráme (rozsah i složení souboru zůstává neměnné). 

 
10 Pravděpodobnostní hledisko náhodného výběru je natolik významné, že v současnosti název 

"pravděpodobnostní výběr" převažuje nad dosud užívaným názvem "náhodný výběr". Určitý význam v názvu 

vyplývá ze skutečnosti, že pravděpodobnosti vybrání jednotek ze základního souboru nemusí u všech jednotek 

stejné, ale může se lišit. 

https://encyklopedie.soc.cas.cz/w/%C5%A0et%C5%99en%C3%AD_v%C3%BDb%C4%9Brov%C3%A1
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Z uvedeného vyplývá, že každá jednotka může být vybrána několikrát a že se nemění 

pravděpodobnost s jakou je vybírána (výběry s vracením mají z pravděpodobnostního hlediska 

charakter nezávislých pokusů a řídí se binomickým rozdělením).   

Při výběru bez vracení/opakování nejsou již vybrané jednotky vráceny zpět do základního 

souboru. Každá jednotka základního souboru může být vybrána jen jednou. Složení základního 

souboru se při každém výběru mění (rozsah souboru se snižuje). V důsledku toho se zvyšuje 

pravděpodobnost výběru zbylých jednotek ze základního souboru. Výběr bez vracení má 

charakter pokusů závislých a řídí se tedy pravděpodobnostními pravidly hypergeometrického 

rozdělení. 

Rozdíl mezi prostým pravděpodobnostním výběrem bez vracení a s vracením je třeba 

respektovat pouze při výběrech ze základního souboru menšího rozsahu. Jestliže rozsah 

základního souboru je dostatečně veliký (přesahuje několikrát svojí velikostí rozsah 

výběrového souboru) a výběr představuje pouze malou část základního souboru, jsou důsledky 

rozdílu mezi výběrem s opakováním a výběrem bez opakování zanedbatelné – rozdíly klesají 

s relativní četností neboli podílem rozsahu výběrového souboru na rozsahu základního souboru. 

Obrázek 7.1: Grafická interpretace prostého pravděpodobnostního výběru 

 

 

 

 

 

 

 

 

 

 

7.1.2 Systematický pravděpodobnostní výběr 

V případě, že je zaručeno náhodné pořadí statistických jednotek v základním souboru 

(populaci), je vhodnou alternativou k prostému náhodnému výběru výběr systematický. Tento 

výběr vyžaduje, aby jednotky byly seřazeny do posloupnosti, jejíž pořadí nesouvisí se 

zjišťovanou skutečností. První jednotka do výběru se volí náhodně a teprve od tohoto výchozího 

bodu se dále vybírá každá 𝑛-tá jednotka. 
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7.1.3 Stratifikovaný pravděpodobnostní výběr 

Tento typ výběru se využívá tehdy, když je základní soubor přirozeně rozdělen do několika 

menších či větších podskupin.  

Stratifikovaný výběr je realizován tak, že základní soubor je rozdělen do nepřekrývajících 

se (nezastupitelných) podskupin/stratu, které obsahují jednotky stejných vlastností (jsou 

homogenní vzhledem k určitému kritériu). Podskupiny se mezi sebou liší, ale jednotky uvnitř 

se vzhledem k vybrané vlastnosti neliší. Statistické jednotky jsou z podskupin následně 

vybírány metodou prostého náhodného výběru. Při stratifikovaném výběru si musíme dát 

pozor na stanovení správného podílu jednotlivých strat na základním souboru (např. 

názory mužů a žen v jednotlivých věkových kategorií na otázky globalizace). K tomu, abychom 

mohli stanovit podíl jednotlivých strat (pohlaví, věk) ve výběru, musíme znát podíly 

obyvatelstva těchto skupin v základním souboru. 

7.1.4 Vícestupňový pravděpodobnostní výběr 

Vícestupňový výběr spočívá v tom, že statistické jednotky nevybíráme přímo, ale v několika 

stupních. Využívá se při výběru jednotek ze základního souboru, ve kterém jsou jednotlivé 

podskupiny přirozeně hierarchicky uspořádány. Na rozdíl od stratifikovaného výběru, jsou však 

tyto podskupiny/klastry navzájem zastupitelné (město, podnik, provoz, zaměstnanec).  

  Tabulka 7.1: Výhody a nevýhody pravděpodobnostního výběru 

Metody výběrů Výhody Nevýhody 

 

 

Prostý 

 

Snadno se používá a poskytuje 

reprezentativní vzorek populace. 

Vyjadřuje všechny známé  

i neznámé vlastnosti populace; úplně 

eliminuje možnosti ovlivnit podobu 

vzorku ze strany výzkumníka. 

 

Systematický 

 

Méně časově náročný než prostý 

náhodný výběr; poskytuje 

reprezentativní vzorek populace. 

 

Stratifikovaný 

 

Zvyšuje reprezentativnost vzorku 

zahrnutím důležitých podskupin do 

výběru. 

V porovnání s přecházejícími typy 

výběrů je náročnější na organizaci  

a zpracování výsledků. 

 

Vícestupňový 

Užitečný pro velké geograficky 

rozptýlených skupiny obyvatel. 

Může snížit reprezentativnost 

vzorku, pokud shluky nejsou 

reprezentativní pro populaci. 
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7.2 Nepravděpodobnostní výběrové zjišťování 

Nepravděpodobnostní výběr (nenáhodný) je takový výběr, u kterého neznáme 

pravděpodobnost zařazení jednotek do výběru. Výběr jednotek je založen na jiných než 

pravděpodobnostních faktorech, nejčastěji na základě zkušeností a poznatků analytika. Existuje 

několik typů nepravděpodobnostního výběru, v následujícím textu jsou uvedeny nejčastěji 

používané. 

7.2.1 Kvótní výběr 

Jedná se o nepravděpodobnostní metodu zajišťující výběr reprezentativního souboru.  

Reprezentativita takového výběru je omezena pouze na reprezentativitu podle 

definovaných kvótních znaků, které nejsou ovlivněny cíli statistické analýzy. Při kvótním 

výběru nelze stanovit výběrovou chybu. Na základě známých charakteristik populace (věk, 

pohlaví, bydliště, národnost atd.), získaných např. ze Sčítání lidu, domů a bytů, stanovujeme 

kvóty a s jejich pomocí do vzorku zařazujeme vybrané jednotky tak, aby struktura vzorku 

odpovídala struktuře populace.  

Jako příklad kvótního výběru můžeme uvést výběr jednotek na základě bydliště a věkové 

kategorie. Pokud je v populaci podle výsledků sčítání lidu, které bylo provedeno v roce 2021, 

v Praze v produktivním věku (15-64 let) 66,3 % osob, na základě správně provedeného 

kvótního výzkum bude zajištěno, že tyto skupiny jsou v šetření zastoupeny odpovídajícím 

způsobem. Reprezentativita takového výběru je omezena pouze na reprezentativitu podle 

definovaných kvótních znaků.  

7.2.2 Anketa 

Anketa (samovýběr) oslovuje zpravidla jen určitou vybranou část statistických jednotek (osob, 

podniků, institucí apod.).  

Zpravidla se provádí formou rozeslání dotazníků, jejichž distribuce v dnešní době probíhá 

především elektronicky nebo telefonicky a v neposlední řadě na základě osobního kontaktu 

s dotazovanými.  

Každý z uvedených způsobů má své výhody a nevýhody, ale jedno mají společné. Cílová 

skupina takto oslovených respondentů není ve většině případů reprezentativním vzorkem 

populace. Dotazník vyplní zpravidla jen menší část dotázaných (v průměru asi jedna třetina), 

často jen na základě finanční odměny anebo jiných benefitů, které z dané činnosti plynou. Takto 

získaná data nelze ve většině případů považovat za obecně platné informace o zkoumaných 
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jevech a nejsou tedy ani vhodné ke statistickému zobecňování11. Reprezentativita není narušena 

jen počtem vyšetřovaných jednotek, ale i způsobem jejich výběru. 

7.2.3 Metoda základního masivu 

Metoda základního masivu se používá tehdy, skládá-li se soubor z několika velkých objektů 

(jednotek) a z velkého počtu malých objektů.  

Metoda základního masivu nedovoluje zobecňovat získané výsledky na celý základní 

soubor, neboť zpravidla nevystihuje specifika malých objektů, které mají jiné zákonitosti  

a tendence chování než velké objekty (např. může dojít k situaci, kdy šetření v oblasti 

potravinářství, bude vycházet z informací od několika opravdu velkých společnosti a specifika 

drobných živnostníků zabývající se výrobou lokálních potravin budou úplně vynechána). 

7.2.4 Záměrný výběr 

Záměrný výběr je druh výběru, u kterého rozhodují o zahrnutí jednotek do výběrového 

souboru různá logická hlediska a subjektivní názor osoby, která výběr realizuje.  

V některých případech mohou přinést záměrné výběry užitečné informace, v jiných 

případech naopak bezcenné a zkreslené. Jeho nevýhodou je, že vyžadují určité předběžné 

znalosti o základním souboru a je založen na subjektivním přístupu osob, které výběr provádějí.  

Jednou z nejčastěji používaných technik záměrného výběru je technika sněhové koule, která 

je zaměřena na výběr jednotek osob, které jsou nositelem specifických vlastností. Metoda 

spočívá v tom, že nové respondenty nabíráme na základě doporučení respondentů, kteří již byli 

vybráni. Tato technika výběru může být užitečná také při výběru z populace, kterou je obtížné 

identifikovat nebo k níž je obtížné získat přímý přístup (např. výběr osob ze stejných zájmových 

skupin a následné předávání kontaktů – nelegální migranti, uživatelé omamných látek atd.). 

Nepravděpodobnostních výběrových zjišťování je v odborné literatuře uváděna celá řada 

(dostupný, příležitostní, typický či kriteriální výběr atd.). Jednotná klasifikace nenáhodných 

zjišťování neexistuje, vždy záleží na autorovi vědeckého pojednání o dané problematice. Oproti 

tomu v případě definování pravděpodobnostních výběrových zjišťování a jejich metod, 

panuje v odborné komunitě téměř terminologická shoda.  

 

 

 

 
11 Nejčastější problematika v závěrečných pracích studentů. Vzorek není dostatečně reprezentativní, aby pokryl 

všechna specifika zkoumané populace. 
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  Tabulka 7.2: Výhody a nevýhody nepravděpodobnostního výběru 

Metody výběrů Výhody Nevýhody 

 

Kvótní výběr 

 

Relativní pružnost, 

rychlost, nahrazuje známé 

vlastnosti ve struktuře 

populace; vytvoření model 

populace. 

 

Obtížná kontrola; subjektivní přístup zpochybňuje 

možnost zobecnění; je reprezentativní pouze 

z hlediska znaků použitých v kvótách; použití jen 

pro dobře zmapované populace, u kterých známe 

podíly zastoupení kvót; vytváření kvót 

znesnadňuje výběr. 

Anketa 

 

Nejjednodušší forma Oslovuje nesystematicky vybranou část populace; 

malá návratnost; výběr založený na rozhodnutí 

respondenta; informace získané anketním šetřením 

nelze zobecňovat. 

Metoda základ. 

Masívu 

Menší pracnost, časová  

a finanční nenáročnost. 

Zobecnění poznatků má menší platnost; 

nevystihuje specifika menších jednotek. 

Záměrný výběr Užitečný pro těžko 

dostupné či důležité 

podskupiny obyvatel. 

Může dojít ke zkreslení a nemusí být 

reprezentativní pro populaci. 

   

7.3 Rozsah výběru 

Splnění požadavků, které jsou kladeny na výše uvedené metody výběrového zjišťování 

nezaručuje, že budeme pracovat s daty, které jsou vhodným zástupcem základního souboru.  

V následujícím textu se budeme věnovat nejčastějšímu problému, který ovlivňuje kvalitu 

výběrových zjišťování a tou je nedostatečný rozsah výběrového souboru. Velikost (rozsah) 

výběru je závislá na zaměření a cílech daného šetření. Jako příklad můžeme uvést rozdíl  

ve stanovení rozsahu výběru a následném sběru dat mezi kvantitativním a kvalitativním 

výzkumem.  

Tabulka 7.3: Stanovení rozsahu výběrového souboru 

Velikost základního souboru 

(populace12) 

Velikost výběrového vzorku v % 

(pravděpodobnostní výběr) 

do 30 jednotek 100 % 

do 100 jednotek 80 % 

do 1 000 jednotek 40 % 

do 10 000 jednotek 7,5 % 

do 100 000 jednotek 1,5 % 

do 1 000 000 jednotek 0,25 % 

do 10 000 000 jednotek 0,06 % 

  

 
12 Základním souborem není vždy celá populace ČR, základním souborem jsou myšleny např. všichni zaměstnanci 

jednoho podniku, všechny stoje v jednom výrobním závodě, všichni studenti druhého ročníku VŠ atd.) 
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Kvantitativní výzkum probíhá podle předem daných pravidel a je založen na ověřování 

předem stanovených hypotéz. Předmětem takového šetření je početná skupina jedinců – 

reprezentativních zástupců celé populace (snažíme se získat vybrané informace 

 o velkém vzorku populace). V odborné literatuře se uvádí následující poměr (tab. 7.3) 

v rozsahu mezi základním a výběrových souborem (tab. 7.3). 

Kvalitativní výzkum, není přesně definován, zaměřuje se na nové pohledy (indukce)  

a předmětem šetření může být i jedinec (zaměřujeme se na získání mnoha informací  

o jednotlivci). Počet jednotek se odvíjí od „teoretického nasycení“. Rozsah souboru je menší, avšak 

flexibilnější (je možné v průběhu měnit jeho velikost). Takto získané informace jsou validní,  

ale nejsou zobecnitelné na větší populaci. 

Mezi další faktory, které mají vliv na rozsah výběrového souboru řadíme: 

Velikost výběrové chyby 

Výběrová chyba nám určuje, nakolik se může výsledek zjištěný na základě z výběrového 

souboru odchylovat od skutečnosti v souboru základním (spolehlivost výsledků).  

Chyba se udává v procentech na zvolené hladině významnosti (více viz Teorie odhadu). 

Stanovíme-li si přípustnou výběrovou chybu, můžeme určit velikost výběrového souboru. 

Snižování výběrové chyby znamená zvyšování rozsahu výběrový soubor. Je třeba dobře zvážit, 

zda je to možné z praktických důvodů (např. podle počtu lidí v síti tazatelů, podle počtu 

rozhovorů, které lze provést atd.). 

Homogenita populace 

Variabilita základního souboru. Pokud je základní soubor nehomogenní (skládá se z více 

podskupin), je potřeba zvýšit rozsah souboru. 

Typ proměnných a velikost výchozích podmnožin 

Rozsah souboru záleží na počtu proměnných a jejich typu. Čím je více proměnných a čím je 

nižší úroveň jejich typu (nominální → ordinální → kvantitativní), tím větší rozsah souboru je 

potřeba.  Rozsah výběrového soubor záleží také na počtu podmnožin, které budeme analyzovat. 

Čím více podmnožin tím je potřeba mít větší počet jednotek.  

Finanční, časová a organizační hlediska 

Skutečná velikost vzorku bývá kompromisem mezi metodologickými požadavky  

a dostupnými finančními, časovými a organizačními zdroji. 
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7.3.1 Určení minimálního rozsahu výběru 

Stanovení dostatečné velikosti výběru je možné provést několika způsoby. Nejznámější postup, 

avšak v praxi málo využívaný je založený na šíři intervalů spolehlivosti dle typu sledovaných 

proměnných. 

Kvantitativní proměnné – postup na základě odhadu intervalu pro průměr 

V případě, že data mají normální rozdělení, určí se minimální velikost výběru tak, aby 

s pravděpodobností (nejčastěji stanovujeme 95 %) platilo:  

 

𝑃 (𝑥̄ − 𝑢
1−

𝛼
2

∙ √
𝑠2

𝑛
≤ 𝜇 ≤ 𝑥̄ + 𝑢

1−
𝛼
2

∙ √
𝑠2

𝑛
) = 1 − 𝛼 (7.1) 

Kde: 𝑃…… .… pravděpodobnost → 𝑃 = 1 − 𝛼 → požadovaná spolehlivost,  

 𝛼 ………. hladina významnosti,  

 𝑥̅ ………. výběrový aritmetický průměr,  

 𝑠2……… výběrový rozptyl,  

 𝑢𝛼 ……..  kvantil normálního rozdělení,  

 𝜇 ………. populační průměr.  

Minimální rozsah souboru se pak stanovuje na základě vztahu:  

 

𝑛 ≥  
𝑢

1−
𝛼
2

2 ∙ 𝑠2

∆2
 (7.2) 

Kde: Δ …. požadovaná polovina šíře intervalu spolehlivosti → přípustná chyba odhadu, 

 𝑛 …  celkový rozsah souboru, 

 𝑢𝛼 …kvantil normálního rozdělení, 

 𝑠2 …. výběrový rozptyl. 

 

Příklad 7.1 

Jak velký soubor dat z populace s normálním rozdělením je potřeba vybrat, abychom mohli 

provést odhad střední hodnoty (průměru) proměnné počet hodin ve škole během dne. 

Předpokládáme, že variabilita vyjádřena směrodatnou odchylkou je 2,34 hodiny. 

Požadujeme, aby výsledný 95% interval spolehlivosti měl šířku: 

a) ± 1 hodinu; 

b) ± 3 hodiny.    
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Řešení příkladu 7.1 

    K výpočtu využijeme vztah 7.2 

a) Δ → ± 1 hodina 

 𝑆2 → 2,342 

 𝑃 = 1 − 𝛼 → 0,95 =  1 −  0,05  
 𝑢𝛼 kvantil normálního rozdělení je tabelovaná hodnota → pro 𝑢1−

𝛼

2
= 𝑢0,975 = 1,96 

𝒏 ≥  
𝟏, 𝟗𝟔𝟐 ∙ 𝟐, 𝟑𝟒

𝟏𝟐
≥ 𝟐𝟐 

b) Δ → ± 3 hodina 

𝒏 ≥  
𝟏, 𝟗𝟔𝟐 ∙ 𝟐, 𝟑𝟒

𝟑𝟐
≥ 𝟑 

Kvalitativní proměnné – postup na základě odhadu relativní četnosti 

V případě, že nás zajímá relativní četnost výskytu jediné kategorie proměnné, je rozsah souboru 

stanoven následovně:  

 

𝑃 (𝑝 − 𝑢
1−

𝛼
2

∙ √
𝑝(1 − 𝑝)

𝑛
≤ 𝜋 ≤ 𝑝 + 𝑢

1−
𝛼
2

∙ √
𝑝(1 − 𝑝)

𝑛
) = 1 − 𝛼 (7.3) 

Kde: 𝑝 ………. výběrová relativní četnost,  

 𝑢𝛼 ……..  kvantil normálního rozdělení,  

 𝜋 ………. populační relativní četnost.  

Minimální rozsah souboru se pak stanovuje na základě vztahu:  

 

𝑛 ≥  
𝑢

1−
𝛼
2

2 ∙ 𝑝(1 − 𝑝)

∆2
 (7.4) 

Ostatní symboly mají stejný význam jako ve vzorci 7.1 a 7.2. 

 

Příklad 7.2 

Jak velký soubor bude potřebný pro zjištění podílů žen, které chodí do menzy na obědy. 

Předpokládáme, že v menze se stravuje 35 % žen.  Požadujeme, aby výsledný 95% interval 

spolehlivosti měl šířku: 

a) ± 2 %; 

b) ± 15 %. 
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Řešení příkladu 7.1 

   K výpočtu využijeme vztah 7.4 

a) Δ → ± 2 % 

 𝑝 → 0,35 

 𝑢𝛼 kvantil normálního rozdělení je tabelovaná hodnota → pro 𝑢1−
𝛼

2
 == 𝑢0,975 1,96 

𝒏 ≥  
𝟏, 𝟗𝟔𝟐 ∙ 𝟎, 𝟑𝟓(𝟏 − 𝟎, 𝟑𝟓)

𝟎, 𝟎𝟐𝟐
≥ 𝟐𝟏𝟖𝟓 

b) Δ → ± 15 % 

𝑛 ≥  
1,962 ∙ 0,35(1 − 0,35)

0,152
≥ 39 

 

Uvedené postupy pro stanovení rozsahu souboru jsou vhodné tehdy, když máme o chování 

dat předběžné informace.  

Z výše uvedeného vyplývá, že čím je rozsah výběrového souboru větší, tím přesnější jsou 

i závěry z prováděného šetření. Velikost výběrového souboru je sice významná, ale není 

rozhodující.  S rostoucí velikostí výběrového souboru se shoda mezi strukturou populace  

a výběrovými daty zvyšuje, ALE rozhodující je reprezentativnost výběrového souboru.  

Závěry analýz prováděné na menším reprezentativním výběrovém souboru jsou často 

mnohem kvalitnějším zdrojem informací než závěry plynoucí z analýzy velkého souboru dat, 

které jsou nereprezentativním zástupcem populace. 

7.4 Reprezentativnost výběrového souboru 

Obecně můžeme uvést, že reprezentativnost výběrového souboru je dána tím, nakolik je tento 

soubor ve zmenšeném měřítku odrazem populace a může ji tedy zastupovat. Jedná se tedy  

o to, jak věrně výběr reprezentuje známé parametry cílové populace (např. národností 

složení, věkovou strukturu, strukturu podniků atd.), které jsou předmětem našeho šetření.  

Reprezentativnost výběrového zjišťování, znamená také možnost zobecnění informaci, 

které jsou obsažené ve výběrovém souboru na soubor základní. Stoprocentní reprezentativnost 

neexistuje, vždy je nějaká možnost vzniku chyby – náhodná chyba výběru (viz kapitola Teorie 

odhadu).  

Nakolik je soubor reprezentativní (spolehlivý a přesný) závisí na dvou faktorech; validitě 

(platnost) a reliabilitě (spolehlivost), které přestavují charakteristiky kvality měření. Validita  

a reliabilita jsou jednou ze základních charakteristik měření v kvantitativním výzkumu,  

a především důležitým předpokladem pro zabezpečení jeho kvality.  
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7.4.1 Validita 

Validita znamená platnost toho, že měříme to, co předpokládáme, že měříme (pravítko je 

validním nástrojem pro stanovená rozměrů uměleckého díla – obrazu, nikoli však pro stanovení 

jeho hodnoty). Neexistuje exaktní metoda, jak ji zjišťovat. Validitu rozlišujeme kriteriální, 

konstruktovou a obsahovou. 

Kriteriální validita posuzuje shodu výsledků, zaměřenou na výsledky zaváděné procedury 

v porovnaní s nějakou kriteriální proměnou nebo s jiným měřením, které je již ověřené. 

Největším problémem prokazování kriteriální validity je právě nalezení vhodného kritéria. Tato 

ověřená proměnná bývá někdy nazývána „kriteriální standard“ nebo „zlatý standard“.  

Konstruktová13 validita umožňuje srovnání a zabývá se teoretickými aspekty měřeného 

konstruktu (proměnné). Je objektivně měřitelná, neboť pracuje s více ukazateli sledovaného 

jevu a vzájemné vztahy těchto ukazatelů číselně vyjadřuje. 

Obsahová validita ověřuje, do jaké míry je měření skutečně zaměřeno na všechny 

sledované aspekty (např. příjímací testy z matematiky – obsahují všechna potřebná témata). Na 

rozdíl od konstruktové či kriteriální validity ji nedokládáme analýzou shody více ukazatelů. Její 

ověření je založeno na věcném rozboru struktury testu, jeho výstupů a opírá se např. o znalost 

určité teorie nebo o odbornou literaturu. Stanovuje se expertním posouzením. 

7.4.2 Reliabilita 

Znamená spolehlivost a přesnost, která je vyjádřena stupněm shody výsledků měření 

provedeného za stejných podmínek (např. stanovení přesné teploty – kapalinový, plynový, 

termoelektrický teploměr).  

Reliabilita se zaměřuje na náhodné chyby měření, kdy za reliabilní považujeme takové 

měření, kde je chyba co nejmenší. Chybovost mimo jiné závisí na vlastnostech a dovednostech 

hodnotitele. Na počtu a kvalitě pozorování.  Technice pozorování, jeho účelu, typu použitého 

nástroje, na subjektu výzkumu a v neposlední řadě na okolnostech pozorování neboli vlivu 

vnějších faktorů (více viz GWET, K. 2014) 

POZOR! Bez reliability nemůžeme dosáhnout validity a naopak. Dostatečně vysoká 

reliabilita je nutnou podmínkou dobré validity měření, vysoká reliabilita však ještě nezaručuje 

dobrou validitu! 

 
13 Konstrukt (jev) je teoretický pojem, který se označuje přímo nepozorovatelný faktor. Měřitelně vyjádřený 

konstrukt je proměnná. 
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Shrnutí kapitoly 

Problémem statistického zjišťování je reprezentativnost výběrového souboru, která je dána 

tím, nakolik je tento soubor ve zmenšeném měřítku odrazem populace a může ji tedy 

zastupovat.  

Požadavek reprezentativnosti výběru jedinců z populace se odvíjí také od metody výběru.  

Pravděpodobnostní výběr vycházejí z předpokladu, že jednotky do výběrového souboru 

zahrnujeme na základě pravděpodobnostních pravidel. 

Nepravděpodobnostní výběr je takový výběr, u kterého neznáme pravděpodobnost 

zařazení jednotek do výběru. 

Kvalitu výběrových zjišťování ovlivňuje rozsah výběrového souboru, který se odvíjí od 

velikosti výběrové chyby; homogenity populace; typu proměnných a velikosti výchozích 

podmnožin; finančních, časových a organizačních faktorů. 

Reprezentativnost závisí na dvou faktorech; validitě a reliabilitě.  

Validita znamená platnost toho, že měříme to, co předpokládáme, že měříme.  

Reliabilita znamená spolehlivost a přesnost, která je vyjádřena stupněm shody výsledků 

měření provedeného za stejných podmínek. 
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7 Kontrolní otázky 

1. Co je úkolem výběrového zjišťování a k čemu slouží?  

2. Jaké jsou dva základní druhy výběrových zjišťování?  

3. Co je to prostý pravděpodobnostní výběr a jaké jsou jeho výhody?  

4. Jaký je rozdíl mezi úplným a neúplným zjišťováním?  

5. Jaké typy pravděpodobnostních výběrů znáte a jaký je jejich hlavní princip?  

6. Co je hlavním principem nepravděpodobnostního výběrového zjišťování?  

7. Co je to reprezentativnost výběrového souboru?  

8. Jaké faktory ovlivňují rozsah výběrového souboru?  

9. Jak souvisí velikost výběrové chyby s rozsahem souboru?  

10. Proč není vždy pravidlem, že větší výběrový soubor zaručuje lepší výsledky?  

11. Jaké dva hlavní faktory ovlivňují, nakolik je soubor reprezentativní?  

12. Co znamená termín validita?  

13. Co znamená termín reliabilita?  
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8 TEORIE ODHADU 

Teorie odhadu je jednou z úloh statistické indukce, kdy z informací o části populace chceme 

dospět k tvrzení, které se týká celé populace.  

Pro výpočet výběrové charakteristiky (např. průměru, rozptylu) je typické, že skutečně 

naměřené hodnoty statistické proměnné jsou vždy získány na reálném a konečném výběru,  

a proto se její hodnota mění od jednoho náhodného výběru k druhému (příklad 8.1).  

 

Příklad 8.1 

Průměrný bodový zisk všech studentů (𝑵 = 𝟒𝟐𝟎) oboru ESM kurzu Statistika  

z testu byl 12,5 bodů. Tento údaj je populační parametr (konstanta) →  𝜇 = 12,5. 

Průměrné bodové hodnocení jednotlivých studijních skupin bylo následující: 

𝑛1 =  30 𝑥̅1 = 9,5 𝑠1 = 4,21  

Výběrová charakteristika 

  Náhodná veličina s určitou variabilitou! 

𝑛2 =  26 𝑥̅2 = 13 𝑠2 = 1,75 

𝑛3 =  50 𝑥̅3 = 11,5 𝑠3 = 2,54 

𝑛4 =  22 𝑥̅4 = 10,5 𝑠4 = 3,48 

 

Teorie odhadu se zabývá metodami, jak na základě výběrových charakteristik neboli 

statistik získaných výpočtem z reprezentativních výběrů odhadnout co nejpřesnější  

a nejspolehlivější charakteristiky modelového rozložení dat (populační parametry).  

Teorie odhadů, stejně jako testování statistických hypotéz o populačních parametrech, 

kterému se budeme věnovat v další kapitole, vycházejí z principů Centrální limitní věty, která 

nám říká, že provedeme-li mnoho náhodných výběrů a pro každý z nich vypočítáme určitou 

výběrovou charakteristiku (například průměr), pak se rozdělení těchto charakteristik bude 

s rostoucí velikostí výběrového vzorku blížit normálnímu rozdělení. To platí bez ohledu na to, 

jaké je původní rozdělení populace. 

Odhady parametrů se provádí nejčastěji na základě: 

▪ momentové metody, která je založena na výpočtu centrálních momentů (viz kapitola 

Číselné charakteristik NV). Tato metoda spočívá v porovnání teoretických  

a výběrových momentů. 

▪ metody maximální věrohodnosti, která je univerzální metodou pro konstrukci odhadů 

parametrů různých typů rozdělení náhodných veličin. Její princip spočívá v nalezení 

takového odhadu parametru, pro který je pravděpodobnost, že pozorované hodnoty 

pocházejí z předpokládaného rozdělení, maximální.  
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Odhad neznámé populační charakteristiky může být buď bodový, nebo intervalový.  

Bodový odhad spočívá v tom, že na základě zjištěných údajů z náhodného výběru dat 

odhadneme předem stanoveným způsobem jedno číslo, které považujeme za nestranný odhad 

parametru základního souboru.  Intervalový odhad je náhodný interval, který s předem 

zvolenou pravděpodobností pokrývá skutečnou hodnotu populačního parametru. Takto 

sestrojený interval hodnot se nazývá konfidenční interval (interval spolehlivosti). 

8.1 Bodové odhady parametrů rozdělení 

Bodový odhad nebývá početně náročný a používáme ho obvykle v případě, je-li rozsah 

výběrového souboru vzhledem k rozsahu základního souboru dostatečně velký (𝑛 ≥ 30).  

Z náhodného výběru získáme konkrétní hodnoty 𝑥 na jejichž základě definujeme statistiku 

𝑇(𝑋). Jestliže cílová populace, ze které pochází náhodný výběr má rozdělení s hustotou 

pravděpodobností 𝑓(𝑥; 𝜃), pak se bodový odhad 𝜃 neznámého parametru 𝜃 rovná:  

𝜃 = 𝑇(𝑋 = 𝑥) 
(8.1) 

Odhad musí, splňovat určité vlastnosti. Vzhledem k tomu, že při každé další realizaci 

náhodného výběru získáme jiné hodnoty veličin, bude i bodový odhad rozdílný. Takový odhad 

nám nemůže poskytnou přesnou hodnotu populačního parametru. Za předpokladu, že splňuje 

níže uvedené vlastnosti, ho však můžeme považovat za „věrohodného“ zástupce populačního 

parametru.  

Mezi základní vlastnosti odhadů řadíme: nestrannost, konzistenci a vydatnost. 

Nestrannost znamená, že střední hodnota odhadu 𝐸(𝑇) nevede k systematickému 

nadhodnocování či podhodnocování odhadované charakteristiky, tzn. kolísá systematicky 

kolem 𝜃 na obě strany. Střední hodnota kvadratické chyby odhadu od skutečné hodnoty 

parametru je nulová.  

𝐸(𝑇) =  𝜃 ↔ 𝐸[(𝑇 −  𝜃)2] = 0 (8.2) 

Splňuje-li zvolená charakteristika tento požadavek, nazýváme ji nestranným, 

nezkresleným či nevychýleným odhadem. Odhady, které nesplňují požadavek (vztah 8.2), 

nazýváme zkreslenými či vychýlenými odhady, v takovém případě platí:    

𝐸(𝑇) −  𝜃 ≠ 0 ↔ 𝐸(𝑇) −  𝜃→ vychýlenost odhadu (8.3) 
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Zkreslený odhad, pro který zkreslení mizí s rostoucím rozsahem výběru, se nazývá 

asymptotickým nezkresleným odhadem. Máme-li k dispozici výběr velkého rozsahu, lze 

pokládat asymptotickým nezkreslený odhad za rovnocenný s odhadem nezkresleným. 

Konzistentním odhadem parametru 𝜃 se označuje takový odhad pro který platí,  

že s rostoucím počtem pozorování se zvyšuje pravděpodobnost (blíží se teoretické hodnotě 1), 

že odhad se bude co nejvíce blížit skutečné hodnotě odhadované charakteristiky základního 

souboru.   

Lim
𝑛→∞

𝑃(|𝑇 − 𝜃| < 𝜖) = 1 ↔ lim
𝑛→∞

𝑃(|𝑇 − 𝜃| > 𝜖) = 0 (8.4) 

Odhad je konzistentní, jestliže je asymptoticky nestranný a jestliže s rostoucím rozsahem 

se hodnota rozptylu blíží nule. 

Vydatnost odhadu znamená, že rozptyly odhadů okolo odhadovaného parametru při 

opakovaných výběrech jsou malé. Charakteristika 𝑇 dává vydatný odhad charakteristiky 

𝜃, jestliže má ze všech nestranných odhadů nejmenší variabilitu. 

Výše uvedené požadavky je vhodné doplnit o posouzení toho, zda je odhad dostatečný 

a robustní.  

Dostatečný odhad (postačující) znamená, že charakteristika 𝑇 shrnuje všechny informace  

o sledovaném parametru, které poskytují data z výběrového šetření. Neexistuje tedy žádná další 

charakteristika, která by měla o parametru 𝜃 nějakou další informaci.  

Robustnost v tomto pojetí znamená, že odhadované robustní charakteristiky nejsou citlivé 

na odlehlé hodnoty, které nemohou být pro svoji důležitost ze souboru odstraněny, odhad není 

ovlivněn tím, zda data pocházejí či nepocházejí z normálního rozdělení a, v neposlední řadě, 

hodnoty vypočtené pomocí robustních (neparametrických) postupů, nejsou ovlivněny velkou 

variabilitou dat. Například robustním odhadem střední hodnoty rozdělení může být medián. 

Při používání bodových odhadů je třeba si uvědomit, že i když za bodový odhad zvolíme 

charakteristiku, která má požadované vlastnosti, její hodnota vypočtená na základě údajů 

získaných náhodným výběrem se bude prakticky vždy lišit od odhadované charakteristiky 

základního souboru. Tato hodnota bude zatížena výběrovou chybou, která vzniká při odhadu 

na základě jednoho výběrového souboru. 
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Stanovení výběrové chyby, která vzniká při bodovém odhadu populačních parametrů 

posuzujeme nejčastěji pomocí střední kvadratické chyby 𝑴𝑺𝑬14.  

 𝑀𝑆𝐸𝑇 = 𝜎𝑇 
2 =  𝐷(𝑇) = 𝐸(𝑇 − 𝜃)2  (8.5) 

Kde: 𝐸(𝑇)…. Střední hodnota odhadu,  

 𝐷(𝑇)…. Rozptyl odhadu.  

V případě, kdy posuzujeme přesnost bodového odhadu (odhad splňuje podmínku 

nestrannosti viz vztah 8.2) používáme k výpočtu střední (směrodatnou) chybu odhadu 𝑺𝑬15, 

kde je za měřítko přesnosti považována směrodatná odchylka 𝜎𝑇. 

 𝑆𝐸𝑇 = 𝜎𝑇 =  √𝐷(𝑇) = √𝐸(𝑇 − 𝜃)2  (8.6) 

Obecně střední chyba odhadu vyjadřuje míru nejistoty (variability) odhadovaného 

parametru způsobenou náhodným výběrem prvků z populace. 

V případě průměrů nám střední chyba odhadu měří (obr. 8.1) rozptýlenost všech 

výběrových průměrů, které jsou vypočítané z různých výběrových souborů 𝑋𝐼 =

(𝑋1, 𝑋2, … , 𝑋𝑘) o rozsahu 𝑛 prvků, které pocházejících z cílové populace (jednoho základního 

souboru). Střední chyba odhadu 𝑆𝐸 vyjadřuje kolísání výběrových průměrů kolem teoretické 

střední hodnoty 𝐸(𝑋) v celém základním souboru.  

Obrázek 8.1: Podstata bodového odhadu teoretické střední hondoty 

 

 

 

 

 

 

 

 

 

 

 

 
14 𝑀𝑆𝐸 z anglického Mean squared error. 
15 𝑆𝐸 z anglického Standardt error. 
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8.2 Intervalové odhady parametrů rozdělení 

Intervalový odhad spočívá ve stanovení číselného intervalu, ve kterém leží neznámý populační 

parametr s předem zvolenou pravděpodobností (obr. 8.2). Tento interval bývá označován také 

jako konfidenční interval a slouží k zobecnění výsledků výběrového souboru na soubor 

základní.  

Obrázek 8.2: Interval spolehlivosti 

 

Šířka intervalového odhadu parametru 𝜃 je ovlivněna koeficientem spolehlivosti 

𝑷 = 𝟏 − 𝜶. 

Spolehlivost odhadu 𝟏 − 𝜶  udává míru pravděpodobnosti 𝑃, se kterou interval 

spolehlivosti pokryje parametr základního souboru při opakovaném provádění výběru – 

představuje míru jistoty odhadu. Nejčastěji používané hodnoty spolehlivosti odhadu jsou 

90 %, 95 % nebo 99 %.   

Provedeme-li 100 opakovaných výběrových šetření a následně na základě získaných údajů 

stanovíme 100 intervalových odhadů populačního parametru, pak při 95% spolehlivost odhadu 

to znamená, že ze 100 vypočtených intervalů spolehlivosti jich přibližně 95 pokryje hodnotu 

populačního parametru.  

 

Příklad 8.3 

Představme si populaci, která má známý průměr 𝜇 = 10. Z této populace provedeme celkem 

50 nezávislých náhodných výběrů, každý o rozsahu 𝑛 = 30. Pro každý z těchto 50 výběrů 

vypočítáme průměr a následně sestavíme 95% interval spolehlivosti. 

Řešení 

Protože pracujeme s 95% spolehlivostí, teoreticky očekáváme, že 95 % intervalů  

(tj. přibližně 47) bude obsahovat skutečnou hodnotu populačního průměru (𝜇=10). Zároveň 

to znamená, že 5 % intervalů (tj. přibližně 2–3) populační průměr pokrýt nemusí.  

Po provedení simulace všech 50 výběrů a výpočtu intervalů získáme výsledek, který je 

znázorněn v následujícím grafu. 
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Pokračování příkladu 8.3 

 

 

Modrá svislá čára představuje skutečnou hodnotu populačního průměru (𝜇=10). 

Vodorovné úsečky jsou jednotlivé 95% intervaly spolehlivosti vypočítané pro každý z 50 

náhodných výběrů.  

Jak můžete vidět z grafu, většina intervalů protíná modrou čáru, což znamená, že 

obsahují populační průměr. Některé z intervalů, které jsou zobrazeny červeně, však modrou 

čáru neprotínají. To názorně ilustruje, že i když je vysoká pravděpodobnost (95 %), že 

interval spolehlivosti bude obsahovat neznámý parametr, není to jistota.  

Graf ilustruje, že interval spolehlivosti je náhodná veličina a že i při vysoké 

spolehlivosti (95 %) existuje šance, že některé intervaly skutečnou hodnotu nezachytí. 

Tento princip je klíčový pro statistické závěry. Ukazuje, že i při vysoké spolehlivosti 

musíme počítat s určitou mírou nejistoty. 

 

Hladina významnosti 𝜶 udává s jakou pravděpodobností nebude odhadovaná 

charakteristika základního souboru zahrnuta ve vypočteném intervalu spolehlivosti. Hladina 

významnosti vyjadřuje riziko toho, že náš odhad nebude správný – představuje míru rizika 

chyby odhadu (obr. 8.3).  Její hodnota je dána dopočtem do celkové spolehlivosti, ve které se 

odhadovaná charakteristika může nacházet, nejčastěji nabývá hodnoty 0,05; 0,01. 
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Obrázek 8.3: Podstata intervalového odhadu spolehlivosti  

   

   

 

 

 

 

 

 

 

Příklad 8.2 

V pracovní den jsme uskutečnili 15 měření (𝑛 = 15) času čekání na autobus městské linky 

č. 99. 

S pravděpodobností 90 % byl stanoven interval, že průměrná doba čekání na městskou linku 

autobusu v pracovní den je v rozmezí od 6–9 minut.  

Zvýšení spolehlivosti na 99 % při stejném rozsahu souboru, stanovilo interval v rozmezí 

0–15 minut → je pro nás tato informace ještě relevantní?  

Řešení 

V případě, že požadujeme vysokou spolehlivost při odhadu doby čekání na autobus musíme 

zvýšit počet prováděných měření → rozsah souboru 𝑛. 

Vysokou spolehlivost odhadu je možné zajistit zvýšením rozsahu výběrového souboru.  

Intervaly pro odhad parametrů základního souboru 

 Jednostranný Levostranný 𝑃( 𝜃 ≤  𝑇𝐷) = 𝛼  

 ( 𝑻𝑫, ∞) 𝑃( 𝜃 >  𝑇𝐷) = 1 − 𝛼   (8.7) 

Kde: 1 − 𝛼 .. koeficient spolehlivosti,  

 𝛼 ….… riziko podhodnocení (hladina významnosti).  

Jednostranný Pravostranný 𝑃( 𝜃 ≥  𝑇𝐻) = 𝛼  

 (−∞,  𝑻𝑯) 𝑃( 𝜃 <  𝑇𝐻) = 1 − 𝛼 (8.8) 

Kde: 𝛼 …… riziko nadhodnocení (hladina významnosti).  
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Oboustranný 
𝑃( 𝜃 ≤  𝑇𝐷) = 𝑃( 𝜃 ≥  𝑇𝐻) =

𝛼

2
 

𝑃( 𝑇𝐷  ≤  𝜃 <  𝑇𝐻) =  1 − 𝛼 
( 𝑻𝑫,  𝑻𝑯) (8.9) 

Kde: 𝛼 …… riziko odhadu (hladina významnosti).  

Z hodnot oboustranného intervalu spolehlivosti můžeme vypočítat maximální přípustná 

chybu odhadu 𝜟, která představuje polovinu šířky tohoto intervalu. Vypočítáme ji jako rozdíl 

horní a dolní hranice intervalu, který vydělíme dvěma (
 𝑻𝑯−𝑻𝑫

𝟐
).  

Maximální přípustná chyba je hodnota, která nám říká, jakou největší chybu jsme ochotni 

akceptovat při odhadu populačního parametru na základě výběrového souboru. 

Tato chyba je velmi důležitou charakteristikou, protože na jejím základě obvykle určujeme, 

jak velký vzorek potřebujeme, abychom dosáhli požadované přesnosti. Představuje cílovou 

hodnotu pro přesnost, kterou si stanovíme ještě před sběrem dat. 

Interpretace intervalu spolehlivosti (konfidenčního intervalu) vychází z předpokladu, 

že náhodný je interval spolehlivosti, nikoliv parametr. Proto se výroky o pravděpodobnosti 

musí týkat intervalu, a ne parametru rozdělení, který je konstantní, neměnný, neznámý, a proto 

jej odhadujeme.  

Nyní budeme využívat uvedené poznatky týkají se bodových a intervalových odhadů 

parametrů rozdělení na nejpoužívanější statistické charakteristiky za předpokladu, že sledovaná 

náhodná veličina 𝑿 byla vybrána z populace s normálním rozdělením.  

8.3 Bodový a intervalový odhad střední hodnoty  

Nejlepším nestranným a konzistentním bodovým odhadem střední hodnoty 𝝁̂ populace 

pocházející z normálního rozdělení je výběrový průměr 𝑿̅.  

𝜇̂ = 𝑋̅ =  
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
=  𝐸(𝑋) (8.10) 

8.3.1 Intervalový odhad střední hodnoty při známém populačním rozptylu  

Sestrojení intervalu spolehlivosti pro různé výběrové charakteristiky se odvíjí od příslušné 

statistiky (výběrové charakteristiky), která vychází ze znalosti nebo neznalosti parametru a typu 

rozdělení náhodné veličiny.   
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Postup odvození intervalu spolehlivosti je vždy stejný. V této kapitole uvedeme jako vzor 

odvození intervalu spolehlivosti pro střední hodnotu 𝝁  za předpokladu, že známe rozptyl 

základního souboru (populační rozptyl). 

𝑋̅~𝑁 (𝜇,
 𝜎2

𝑛
) 

Výběrová statistika pro parametr populačního průměru je v tomto případě dána vztahem 

6.1. (viz kapitola Náhodný výběr) a řídí se kvantily normovaného normálního rozdělení.  

𝑈 =
𝑋̅ − 𝜇

𝜎
√𝑛  ~ 𝑢𝛼 

Oboustranný interval spolehlivosti pro parametr 𝝁 vychází z předpokladu, že hustota 

pravděpodobnosti 𝑓(𝑥) normovaného normálního rozdělení výběrové náhodné veličiny je 

symetrická funkce.  

𝑃 ( 𝑢
1−

𝛼
2

 <  𝑈 < 𝑢
1−

𝛼
2

) =  1 − 𝛼, (8.11) 

𝑃 (  𝑢1−
𝛼

2
  <  

𝑋̅−𝜇

𝜎
√𝑛  < 𝑢1−

𝛼

2
) =  1 − 𝛼, (8.12) 

𝑃 (𝑋̅ −   𝑢1−
𝛼

2
  ∙

𝜎

√𝑛
<  𝜇 < 𝑋̅ + 𝑢1−

𝛼

2
∙

𝜎

√𝑛
) =  1 − 𝛼. (8.13) 

Levostranný interval spolehlivosti 𝑃 (𝑋̅ −   𝑢1−𝛼   ∙
𝜎

√𝑛
<  𝜇) =  1 − 𝛼. (8.14) 

Pravostranný interval spolehlivosti 𝑃 ( 𝜇 < 𝑋̅ + 𝑢1−𝛼 ∙
𝜎

√𝑛
) =  1 − 𝛼. (8.15) 

Jak již bylo uvedeno, postup tvorby intervalu spolehlivosti pro všechny základní číselné 

charakteristiky je obdobný. Proto nebudeme v následujícím textu opakovat celý postup, ale 

vždy si jen připomeneme, jakou výběrovou statistiku použít a z jakého typu rozdělení je 

odvozená. 

8.3.2 Intervaly spolehlivosti pro 𝝁 při neznámém populačním rozptylu  

V praxi se většinou setkáváme s tím, že při sestavování intervalu spolehlivosti pro střední 

hodnotu 𝜇 neznáme populační rozptyl. V takovém případě pracujeme s výběrovým rozptylem 

𝑠2  nebo jeho odmocninou směrodatnou odchylkou 𝑠.  
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Pokud máme dostatečný rozsah výběrového souboru 𝒏 > 𝟑𝟎, je možné určit intervalový 

odhad průměru pomocí výběrové statistiky vztah 6.2 (viz kapitola Náhodný výběr), která se řídí 

kvantily normovaného normálního rozdělení.  

 Oboustranný interval 𝑃 (𝑋̅ −   𝑢1−
𝛼

2
  ∙

𝑠

√𝑛
<  𝜇 < 𝑋̅ + 𝑢1−

𝛼

2
∙

𝑠

√𝑛
) =  1 − 𝛼. ((8.16) 

 Levostranný interval 𝑃 (𝑋̅ −   𝑢1−𝛼   ∙
𝑠

√𝑛
<  𝜇) =  1 − 𝛼. ((8.17) 

 Pravostranný interval 𝑃 ( 𝜇 < 𝑋̅ + 𝑢1−𝛼 ∙
𝑠

√𝑛
) =  1 − 𝛼. ((8.18) 

Jestliže nemáme dostatečný rozsah souboru 𝒏 < 𝟑𝟎. Kvantily normovaného normálního 

rozdělení nahrazujeme, kvantily Studentova 𝒕-rozdělení a při výpočtu intervalu spolehlivosti 

využíváme výběrovou statistiku (vztah 6.3). Hustota pravděpodobnosti 𝑓(𝑥) Studentova 

𝑡-rozdělení výběrové náhodné veličiny je symetrická funkce.  

  Oboustranný interval 𝑃 (𝑋̅ −   𝑡1−
𝛼

2
(𝑛−1)   ∙

𝑠

√𝑛
<  𝜇 < 𝑋̅ + 𝑡1−

𝛼

2
(𝑛−1) ∙

𝑠

√𝑛
) =  1 − 𝛼. (8.19) 

 Levostranný interval 𝑃 (𝑋̅ −   𝑡1−𝛼(𝑛−1)   ∙
𝑠

√𝑛
<  𝜇) =  1 − 𝛼. (8.20) 

 Pravostranný interval 𝑃 ( 𝜇 < 𝑋̅ + 𝑡1−𝛼(𝑛−1) ∙
𝑠

√𝑛
) =  1 − 𝛼. (8.21) 

Příklad 8.4 

Na základě výpočtu popisných statistik (příklad 5.2) u proměnné cena notebooku, kterou 

jsem analyzovaly z datové matice „Notebooky“ (datová matice je umístěna v kurzu 

v Moodle), jsme zjistili, že cena notebooků má normální rozdělení. 

Z náhodného výběru o rozsahu 150 notebooků určete: 

a) Se spolehlivostí 95 % intervalový odhad pro střední cenu notebooků. 

b) Výběrovou chybu odhadu → 𝑆𝐸𝑇. 

c) Maximální přípustnou chybu odhadu → ∆. 

Řešení 

   SPSS 
Analyze → Descriptive Statistics → Explore → proměnná Cena do okna 

Variable(s) → OK 
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Pokračování příkladu 8.4 

 

 

 

 

a) Z výpočtu, pomocí programu SPSS (kde je standardně nastavena spolehlivost 95 %) 

sestavíme interval spolehlivosti pro populační průměr  

𝑃 (20052,37 <  𝜇 < 22932,51) =  95 %. 

Populační průměr ceny notebooku je s 95% spolehlivostí v rozmezí od 20 052 Kč do 

22 932 Kč. To znamená, že s 95% jistotou se skutečná průměrná cena všech notebooků 

v populaci nachází v tomto rozmezí → kdybychom zjišťovaly ceny opakovaně, tak by 

95 % nalezených intervalových odhadů obsahovalo skutečnou hodnotu populačního 

průměru ceny notebooku. 

b) Stanovení výběrové chyby, která vzniká při bodovém odhadu populačních parametrů, 

provedeme pomocí střední chyby odhadu, jejíž hodnota je 728,78 Kč a kterou vyčteme 

přímo z výstupu SPSS. 

c) Maximální přípustná chyba 𝚫  je dána rozdílem horní a dolní meze intervalu 

spolehlivosti dělené dvěma ( 
𝑇𝐻 − 𝑇𝐷

2
).  

22 932,51−20 052,37

2
 = 1 440,07  

Průměrná cena notebooku, kterou jste vypočítal na základě hodnot z výběrového 

souboru (21 492 Kč), by se od skutečné průměrné ceny všech notebooků v populaci 

mohla lišit maximálně o 1 440 Kč oběma směry (nahoru i dolů) při dané spolehlivosti.  

8.4 Bodový a intervalový odhad variability  

Při odhadu variability se nejčastěji zaměřujeme na odhad dvou důležitých populačních 

parametrů: rozptylu a směrodatné odchylky. Tyto parametry nám poskytují důležité 

informace o tom, jak jsou hodnoty v populaci rozptýleny a jaká je jejich heterogenita. 

8.4.1 Bodový a intervalový odhad populačního rozptylu 

Nejlepším asymptoticky nestranným bodovým odhadem populačního rozptylu 𝝈̂𝟐,  který 

pochází z normálního rozdělení, je výběrový rozptyl 𝒔𝟐 . 

𝜎̂2 =  𝑠2 =  
∑ (𝑋𝑖−𝑋̅)2𝑛

𝑖=1

𝑛−1
 = 𝐷(𝑋) (8.22) 
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K modelování intervalového odhadu pro rozptyl za předpokladu, že populace má normální 

rozdělení, se používá výběrová statistika (vztah 6.4), která se řídí 𝑐ℎí −kvadrát rozdělení, jehož 

hustota pravděpodobnosti 𝑓(𝑥) výběrové náhodné veličiny je asymetrická funkce.  

 Oboustranný interval 𝑃 (
(𝑛−1)𝑠2

𝜒1−𝛼/2
2 < 𝜎2 <

(𝑛−1)𝑠2

𝜒𝛼/2
2 ) = 1 − 𝛼. (8.23) 

 Levostranný interval 𝑃 (
(𝑛−1)𝑠2

𝜒1−𝛼
2 < 𝜎2) = 1 − 𝛼. (8.24) 

 Pravostranný interval 𝑃 (𝜎2 <
(𝑛−1)𝑠2

𝜒𝛼
2 ) = 1 − 𝛼. (8.25) 

8.4.2 Bodový odhad směrodatné odchylky 

Po odhadu populačního rozptylu se zaměříme na směrodatnou odchylku, která je neméně 

důležitou charakteristikou variability.  Směrodatná odchylka je úzce spjata s rozptylem, ale má 

velkou výhodu v tom, že je vyjádřena ve stejných jednotkách jako původní data. Díky tomu 

je mnohem snazší ji interpretovat a porovnávat s ostatními statistikami, jako je například 

průměr. 

Bodový odhad směrodatné odchylky základního souboru 𝜎̂ se určuje z odchylek 

jednotlivých pozorování od výběrového průměru pro 𝑛-1 stupňů volnosti16. 

 

𝜎̂ = 𝑠 =  √
∑ (𝑋𝑖 − 𝑋̅)2𝑛

𝑖=1

𝑛 − 1
 (8.26) 

Další úpravou tohoto vztahu a za předpokladu, že výběrová směrodatná odchylka 𝑠 se 

vypočítá ze vztahu 5.27 můžeme odvodit bodový odhad pro směrodatnou odchylku 

výběrových průměru 𝝈̂𝑿̅. 

 𝜎𝑋̅ =
𝜎

√𝑛
 (8.27) 

 𝜎̂𝑋̅ = 
𝜎̂

√𝑛
 = 

𝑠

√𝑛−1
 (8.28) 

POZOR! Ačkoliv je princip stupňů volnosti a používání 𝑛−1 ve vzorcích pro správné a přesné 

odhady zásadní z teoretického hlediska, v našich praktických výpočtech ho nebudeme 

explicitně řešit. Důvodem je, že pracujeme s velkými výběry (většinou n>30), kde je rozdíl mezi 

dělením 𝑛 a 𝑛 − 1 zanedbatelný. Navíc, statistické programy, jako je SPSS, provádějí tyto 

výpočty automaticky a s vysokou přesností, aniž bychom museli tuto úpravu zadávat ručně. 

 
16 Stupně volnosti v teorii pravděpodobnosti udávají, kolik hodnot v souboru můžeme „volně měnit“, aniž by se 

porušila podmínka nestrannosti a nezkreslenosti odhadů.  
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8.5 Bodový a intervalový odhad relativní četnosti   

V mnoha případech při řešení praktických úloh odhadujeme podíl jednotek s danou vlastností 

v celé populaci. Odhadujeme tedy parametr 𝜋 alternativního rozdělení. 

Při dostatečně velkém rozsahu výběru 𝑛 >
9

𝑝(1−𝑝) 
  je nejlepším nestranným, vydatným, 

konzistentním a dostatečným bodovým odhadem relativní četnosti 𝝅̂ výběrová relativní 

četnost 𝒑. 

Při konstrukci intervalu spolehlivosti relativní četnosti 𝜋 postupujeme dvojím způsobem: 

a)  Při malých rozsazích vycházíme z toho, že při výběrech s opakováním se odhad 

relativní četnosti řídí binomickým rozdělení, při výběrech bez opakování pak 

hypergeometrickým rozdělením. V praxi obvykle krajní hodnoty intervalů v takovémto 

případě neurčujeme nebo v případě, že je to požadováno musíme využít speciální tabulky 

uvedených rozdělení anebo statistický software. 

b) Vycházíme-li ze skutečnosti, že rozsah výběrového souboru je dostatečně velký, lze 

rozdělení výběrové relativní četnosti aproximovat normálním rozdělením. Výpočet intervalu 

spolehlivosti pro odhad relativní četnosti se pak provádí pomocí výběrové statistiky (vztah 6.5). 

Takto vypočtený interval spolehlivosti je jen přibližný, a to z důvodu, že ve výběrové 

statistice není zohledněna tzv. oprava pro spojitost, kterou je třeba uvažovat tehdy, 

nahrazujeme-li nějaké diskrétní rozdělení rozdělením spojitým. 

Oboustranný interval 
𝑃 (𝑝 −  𝑢1−

𝛼

2
∙

√𝑝(1−𝑝)

√𝑛
<  𝜋 < 𝑝 + 𝑢1−

𝛼

2
∙

√𝑝(1−𝑝)

√𝑛
) =  1 − 𝛼. (8.29) 

 Levostranný interval 
𝑃 (𝑝 −   𝑢1−𝛼   ∙

√𝑝(1−𝑝)

√𝑛
<  𝜋) =  1 − 𝛼. (8.30) 

 Pravostranný interval 
𝑃 ( 𝜋 < 𝑝 + 𝑢1−𝛼 ∙

√𝑝(1−𝑝)

√𝑛
) =  1 − 𝛼. (8.31) 
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Příklad 8.5 

Zjišťujeme, jaký je podíl notebooků, které mají numerickou klávesnici. Data máme z matice 

„Notebooky“, která už je náhodným výběrem 150 kusů notebooků. Z průzkumové analýzy 

této kvalitativní proměnné jsme zjistili, že 68 notebooků má numerickou klávesnici.  

a) Vypočítejte výběrový podíl (relativní četnost) notebooků s numerickou klávesnicí. 

b) Proveďte 95% intervalový odhad podílu všech notebooků v populaci, které mají 

numerickou klávesnici. 

c) Vypočítejte a interpretujte maximální přípustnou chybu odhadu. 

Řešení 

SPSS 
Analyze → Descriptive Statistics → Frequencies → proměnná Klávesnice do 

okna Variable(s) → OK 

 

  

a) Výběrový podíl (neboli relativní četnost) se vypočítá jako podíl počtu notebooků 

 s numerickou klávesnicí ku celkovému počtu notebooků ve výběru → 𝑝𝑖 = 45,3. 

SPSS 

Analyze → Compare Means and Proportions → One-Sample Proportions → do 

okna Test Variable(s) vložíme proměnnou Klavesnice, v okně Define Success 

vybereme Value(s) a napíšeme zde kód pro ano v našem případě hodnotu 1 → 

Confidence Intervals zvolíme Inetrval Type(s) Wald → Continue → OK 

 

 

b) Z výpočtu v programu SPSS jsme sestavili interval spolehlivosti pro odhad podílu 

všech notebooků v populaci, které mají numerickou klávesnici. 

𝑃 (0,374 <  𝜋 < 0,533) =  95 % 

To znamená, že s 95% jistotou se skutečný podíl všech notebooků s numerickou 

klávesnicí v populaci nachází v rozmezí od 37,4 % do 53,3 %. 

c) Maximální přípustná chyba odhadu (𝛥) představuje polovinu šířky intervalu 

spolehlivosti 𝛥 =  ( 
𝑇𝐻 − 𝑇𝐷

2
) =  

0,534−0,375

2
 = 0,0795.  

To znamená, že náš odhad podílu notebooků s numerickou klávesnic se od skutečné 

hodnoty v populaci může lišit maximálně o 7,95 %. 
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Shrnutí kapitoly 

Zobecnitelnost vyjadřuje, zda a s jakou jistotou platí výsledky získané z výběrového souboru 

na celou populaci. 

Odhad neznámé populační charakteristiky může být buď bodový, nebo intervalový. 

Bodový i intervalový odhad mají náhodně proměnlivý charakter. Výpočet odhadů pro 

každý náhodný výběr vede ke stanovení „trochu jiného“ bodového odhadu nebo intervalu 

spolehlivosti. 

Bodový odhad spočívá v tom, že na základě zjištěných údajů z náhodného výběru 

odhadneme předem stanoveným způsobem jedno číslo, které považujeme za nestranný odhad 

parametru základního souboru.  Vlastnosti bodového odhadu 𝜃 ̂ (nestrannost, konzistence  

a vydatnost) vypovídají o tom, že k odhadu populační charakteristiky 𝜃 byla použitá vhodná 

statistika 𝑇. 

Intervalový odhad je číselný interval, ve kterém se s předem zvolenou pravděpodobností 

nachází odhadovaná hodnota populačního parametru. Takto sestrojený interval hodnot  

se nazývá konfidenční interval (neboli interval spolehlivosti). 

Spolehlivost odhadu je dána pravděpodobností, s jakou se odhadovaná charakteristika 

základního souboru 𝜃 bude nacházet v intervalu vymezeném příslušnou statistikou 𝑇(𝑋). 

Šířka intervalu spolehlivosti je závislá na rozsahu výběrového souboru. Čím větší rozsah 

výběrového souboru máme, tím přesnější je odhad populačního parametru. 
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8 Kontrolní otázky 

1. Co je hlavním cílem teorie odhadu? 

2. Jaký je rozdíl mezi populační charakteristikou (parametrem) a výběrovou 

charakteristikou (statistikou)? 

3. Jaké jsou dva základní typy odhadů neznámé populační charakteristiky? 

4. Definujte bodový odhad? 

5. Co nám říká interval spolehlivosti? 

6. Jaký je vztah mezi šířkou intervalu spolehlivosti a rozsahem výběrového souboru? 

7. Jak ovlivní zvýšení spolehlivosti odhadu šířku intervalu, pokud se rozsah souboru 

nezmění? 

8. Jaké základní vlastnosti by měl splňovat dobrý bodový odhad? 

9. Stručně vysvětlete, co znamená nestrannost a konzistence. 

10. Jak se vypočítá maximální přípustná chyba odhadu z intervalu spolehlivosti? 

11. K čemu nám tato hodnota slouží? 

12. Vysvětlete na příkladu 95% spolehlivosti, co znamená spolehlivost odhadu. 

13. Jaký je rozdíl mezi predikčním intervalem a konfidenčním intervalem (intervalem 

spolehlivosti)? 
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8 Příklady k procvičení 

Na základě datové matice „Byty“, kterou naleznete v kurzu v Moodle, odpovězte na následující 

otázky. 

8.1 Bodový odhad a intervalový odhad populačního průměru 

8.1.1  Vypočtěte a interpretujte bodový odhad pro průměrné měsíční nájemné za byt  

v populaci. Sestavte 95% interval spolehlivosti pro průměrné měsíční nájemné. 

Následně interpretujte význam tohoto intervalu a určete maximální přípustnou chybu 

odhadu. 

[𝜇̂ =  15 531 Kč ; 𝑃(14 817 Kč < 𝜇 < 16 245 Kč) = 95%;  𝛥 = 714 Kč] 

8.1.2    Z datové matice vytvořte podsoubor, který bude obsahovat pouze byty s dispozicí 3+1. 

Na základě tohoto podsouboru odpovězte na následující otázky. Vypočítejte  

a interpretujte bodový odhad průměrné plochy bytů 3+1 v populaci. Sestavte 95% 

interval spolehlivosti pro průměrnou plochu všech bytů 3+1 v populaci. Následně 

interpretujte význam tohoto intervalu a určete maximální přípustnou chybu odhadu.                     

  [𝜇̂ =  82,77 𝑚2 ; 𝑃(80,13 𝑚2 < 𝜇 < 85,42 𝑚2) = 95%;  𝛥 = 2,645 𝑚2] 

8.2 Bodový odhad a intervalový odhad populačního podílu 

8.2.1    Vypočtěte a interpretujte bodový odhad podílu bytů s výtahem v populaci. Sestavte 95% 

interval spolehlivosti pro podíl všech bytů v populaci, které mají výtah. Následně 

interpretujte význam tohoto intervalu a určete maximální přípustnou chybu odhadu. 

  [𝜋̂ =  61,3 %; 𝑃(53,5% < 𝜋 < 69,1 %) = 95%;  𝛥 = 7,79 %] 

 

8.2.2    Z datové matice vytvořte podsoubor, který bude obsahovat pouze novostavby. Na základě 

tohoto podsouboru odpovězte na následující otázky. Vypočítejte a interpretujte bodový 

odhad podílu bytů s výtahem v novostavbách. Sestavte 95% interval spolehlivosti pro 

podíl všech bytů v novostavbách, které mají výtah. Následně interpretujte význam tohoto 

intervalu a určete maximální přípustnou chybu odhadu. 

  [𝜋̂ =  81,8 %; 𝑃(72,5 % < 𝜋 < 91,1 %) = 95%;  𝛥 = 9,3 %] 
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9 TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 

Úkolem testování statistických hypotéz je posoudit platnost či neplatnost správně17 

formulované hypotézy.   

Testování statistických hypotéz je, spolu s odhady parametrů rozdělení základního souboru, 

jednou z hlavních úloh matematické statistiky. Testování nám umožňuje na základě informací 

o chování výběrové náhodné veličiny, usuzovat s předem stanovenou pravděpodobností  

na charakter celé populace. Stejně jako při odhadech spolehlivosti, i zde platí předpoklad,  

že výběrový soubor musí být reprezentativním zástupcem základního souboru, musí věrně 

reprezentovat známé parametry cílové populace – je tedy jejím odrazem.  

Hypotéza znamená předpoklad, tvrzení či domněnku. V běžném využití je hypotéza 

neprokázané tvrzení, které by mělo být možné zkoumat, empiricky ověřovat. Odborná hypotéza 

je vědecky přijatelný předpoklad umožňující vědecké vysvětlení jevů. Na počátku vědeckého 

poznání stojí domněnka, kterou hypotéza rozpracovává a která musí být podložena celou řadou 

faktů vytyčujících nám další směr výzkumu. Hypotéza představuje vědecký předpoklad, který 

byl vyvozen z vědecké teorie.  

Správně stanovené hypotézy mají klíčovou roli v rozhodování, jaké jevy mají být 

předmětem šetření, aby nedocházelo k získávání nadbytečných informací anebo naopak nebyly 

opomenuty informace důležité. Významnou funkcí hypotéz je propojení teoretické a empirické 

složky práce, tzv. operacionalizace hypotéz, tj. smysluplné a efektivní transformování 

obecných pojmů do podoby empiricky pozorovatelných znaků. 

V našem textu se dále budeme podrobněji zabývat testování statistických hypotéz, které 

představují určitou podtřídu vědeckých hypotéz. 

9.1 Statistická hypotéza 

Statistickou hypotézou rozumíme jakýkoliv předpoklad či tvrzení, které se může týkat 

neznámých parametrů, tvaru rozdělení náhodné veličiny, a také dalších vlastností základního 

souboru – populace. Statistickou hypotézou může být například tvrzení, že dva náhodné výběry 

pocházejí ze stejného rozdělení, náhodný výběr pochází z normálního rozdělení, ověřování 

reprezentativnosti výběrového souboru vůči cílové populaci, zjišťování toho, zda dva výběrové 

soubory mají stejný populační parametr atd.  

 
17 Hypotéza představuje jednoznačné tvrzení, které se vyjadřuje oznamovací větou. 
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9.1.1 Parametrická hypotéza 

Parametrické hypotézy se týkají výhradně hodnoty jednoho nebo několika parametrů 

rozdělení náhodné veličiny. K ověřování hypotéz o neznámých parametrech rozdělení 

pravděpodobnosti, kterým se uvažovaná náhodná veličina řídí, se používají parametrické 

testy. Tyto testy jsou založeny na určitých znalostech o charakteru pravděpodobnostního 

rozdělení studovaných náhodných veličin (např. 𝑡-test je založen na předpokladu, že základní 

soubory, z nichž byly provedeny náhodné výběry, mají normální rozdělení se stejnými 

rozptyly).  V převážné většině jde o početně náročnější, ale silné testy. 

POZOR! Je třeba si uvědomit, že testování parametrických hypotéz v případě chybně určeného 

rozdělení pravděpodobnosti parametrické testové statistiky může vést k mylným závěrům!  

9.1.2 Neparametrická hypotéza 

Neparametrické hypotézy se týkají tvrzení, které jsou zaměřena na obecné vlastnosti populace 

(např. o tvaru rozdělení základního souboru, o závislosti proměnných atd.) bez konkrétní 

znalosti parametrů rozdělení. K ověřování těchto tvrzení se používají neparametrické testy. 

Neparametrické testy nevyžadují znalost typu rozdělení např. normalitu rozdělení 

pravděpodobnosti, ale pouze jeho symetrii. Výpočet neparametrických testů ve velké většině 

případů nevychází ze skutečných hodnot náhodné veličiny, ale opírá se o pořadová čísla (ranky), 

která skutečné hodnoty nahrazují.  Neparametrické testy mají menší sílu. Používají se především 

tehdy, jestliže není možné použit testy parametrických z důvodů nesplnění jejich předpokladů.  

9.1.3 Nulová a alternativní hypotéza 

Předpoklad, jehož platnost ověřujeme, se nazýváme nulová hypotéza 𝑯𝟎. Tato hypotéza 

představuje určitý rovnovážný stav a bývá vyjádřena rovnosti „= “. Je to tvrzení, které obvykle 

vyjadřuje „nepřítomnost rozdílu“ mezi testovanými náhodnými veličinami.  

Nulovou hypotézou mohou být určitá tvrzení o parametrech rozdělení, nebo tvaru 

pravděpodobnostního rozdělení.  

Jestliže populační parametr, odhadovaný na základě výběru označíme 𝜃 a hypotetickou 

hodnotu tohoto parametru 𝜃0, pak nulová hypotéza má tvar: 

𝐻0: 𝜃 = 𝜃0 (9.1) 

Nulová hypotéza tvrdí, že odhadovaný populační parametr se statisticky významně neliší 

od hypotetické hodnoty.   
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V případě, že se nám nepodaří nulovou hypotézu vyvrátit, hovoříme o jejím nezamítnutí,  

a nikoliv o přijetí. Nezamítnutí nulové hypotézy neznamená absolutní potvrzení její platnosti. 

Pouze vyjadřuje skutečnost, že výsledek testu neprokázal dostatečně velkou neshodu mezi 

odhadovaným populačním parametrem a hypotetickou hodnotu tohoto parametru, která by byla 

důvodem k zamítnutí hypotézy.  

Proti nulové hypotéze stavíme alternativní hypotézu 𝑯𝟏. Ta představuje porušení 

rovnovážného stavu a je tvrzením o neznámých vlastnostech rozdělení pravděpodobnosti 

sledované náhodné veličiny, které popírá platnost nulové hypotézy. Alternativní hypotézu 

přijímáme v případě, že jsme nulovou hypotézu 𝐻0 zamítli jako nesprávnou. 

Tvar alternativní hypotézy záleží na typu nerovnosti mezi odhadovaným populačním 

parametrem 𝜃 a hypotetickou hodnotou tohoto parametru 𝜃0. 

Oboustranná alternativa 𝐻1: 𝜃 ≠ 𝜃0 (9.2) 

Levostranná alternativa 𝐻1: 𝜃 < 𝜃0 (9.3) 

Pravostranná alternativa 𝐻1: 𝜃 > 𝜃0 (9.4) 

 

Slovní vyjádření alternativní hypotézy nám říká, že odhadovaný populační parametr se 

statisticky významně liší od hypotetické hodnoty.   

9.2 Statistický test 

Statistický test je rozhodovací postup, který nám na základě náhodného výběru umožní ověřit, 

zda hypotéza platí či nikoliv. Tento test reprezentuje takzvaná výběrová statistika (neboli 

testová statistika). 

Testová statistika 𝑇→ 𝑇(𝑋 = 𝑥) je funkcí náhodného výběru 𝑋, která nám charakterizuje 

stupeň nesouladu mezi předpokladem o datech (parametrech rozdělení, typu rozdělení 

náhodných veličin) a hodnotami získanými na základě výběrového šetření. Testová statistika je 

tedy také náhodnou veličinou a má určitý typ pravděpodobnostního rozdělení. Jinými slovy, 

testová statistika je transformace pozorovaných výběrových náhodných veličin, které pocházejí 

z určitého pravděpodobnostního rozdělení. Charakter rozdělení závisí na tom, jakou hypotézu 

testujeme. Je založena na odchylce výběrové charakteristiky od hypotetické hodnoty parametru. 

Interval (množinu) možných hodnot, testové statistiky T(X) rozdělujeme na dvě disjunktní 

podmnožiny (obr. 9.1).  
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Obor nepřijetí testové statistiky (kritický obor nebo interval zamítnutí), který značíme 

symbolem 𝑾𝜶, je ta část všech možných hodnot testové statistiky, kde je velmi 

nepravděpodobné, že by mohla ležet testová statistika za předpokladu, že platí nulová hypotéza. 

Obor přijetí testové statistiky (interval nezamítnutí), který značíme symbolem 𝑾𝟏−𝜶.  

Body, jimiž jsou tyto podmnožiny odděleny, se nazývají kritické hodnoty. Konkrétní 

kritické hodnoty na zvolené hladině významnosti 𝛼 se při praktickém provádění testů 

vyhledají ve statistických tabulkách nebo jsou určeny speciálními funkcemi ve statistických 

programech. Nejčastěji se jedná o kvantil pravděpodobnostního rozdělení testové statistiky 

𝑻(𝑿). 

Obrázek 9.1: Vymezení oboru možných hodnot testové statistiky 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Padne-li vypočtená hodnota testovacího kritéria T(X) do kritického oboru 𝑊𝛼, zamítáme 

nulovou hypotézu H0 a přijímáme alternativní hypotézu H1.  

Spadá-li vypočtená hodnota testovacího kritéria T(X) do oboru přijetí 𝑊1−𝛼, nezamítáme 

H0. Nemůžeme však říct, že by to znamenalo její přijetí. Výsledek prováděného testu neurčuje, 

jak velká shoda je mezi skutečností a testovanou hypotézou. 
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Při testování statistických hypotéz provádíme rozhodnutí o přijetí nulové hypotézy (H0) 

nebo alternativní hypotézy (H1) na základě náhodného výběru. Je tedy zřejmé, že toto 

rozhodnutí nelze provést s absolutní jistotou a že vždy existuje riziko chybného rozhodnutí.  

Jestliže je nulová hypotéza ve skutečnosti platná, a my ji přesto zamítneme, dopouštíme se 

chyby 1. druhu (𝜶).  Riziko tohoto mylného rozhodnutí je velmi malé a jeho pravděpodobnost 

je rovna hladině významnosti 𝛼. Obvykle volíme 5% nebo 1% hladinu významnosti. Pokud 

nulová hypotéza platí a my ji nezamítneme, rozhodli jsme správně. Pravděpodobnost tohoto 

rozhodnutí se označuje jako 1− 𝛼 a nazývá se spolehlivost.  

Jestliže nezamítneme nulovou hypotézu, která je ve skutečnosti nesprávná, dopouštíme se 

chyby 2. druhu (𝜷). Její doplněk do 1, tzn. 1 − 𝛽, vyjadřuje pravděpodobnost správného 

zamítnutí testované hypotézy (schopnost testu odhalit neplatnost nulové hypotézy) a nazývá se 

síla testu (obr. 9.2).  

Platnost statistické hypotézy musí být vždy zkoumána na základě náhodného výběru  

z cílové populace! 

Obrázek 9.2: Výsledky testu statistických hypotéz 

 

 Výsledek testu 

𝑯𝟎 nezamítáme 𝑯𝟎 zamítáme 

S
k

u
te

čn
o
st

 

𝑯𝟎 je pravdivá Správné rozhodnutí 

Pravděpodobnost rozhodnutí:  

1 −   → spolehlivost. 

Chyba 1. druhu 

Pravděpodobnost rozhodnutí:  

 → hladina významnosti. 

𝑯𝟎 není pravdivá Chyba 2. druhu 

Pravděpodobnost rozhodnutí: 

. 

Správné rozhodnutí 

Pravděpodobnost rozhodnutí:  

1 −   → síla testu. 

 

Při testu hypotézy 𝐻0 proti alternativě 𝐻1 požadujeme, aby pravděpodobnost chyby  

1. a 2. druhu byla co možná nejmenší.  

Tato skutečnost je však v rozporu – pro daný rozsah výběru a pro dané testovací kritérium 

snížení hladiny významnosti 𝛼 (tzn. snížení pravděpodobnosti chyby 1. druhu) má za následek 

zvýšení pravděpodobnosti chyby 2. druhu 𝛽 a naopak. Způsob, jak současně snížit hodnotu 

pravděpodobnosti 𝛼 a 𝛽 spočívá ve zvýšení rozsahu náhodného výběru. 
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Doporučený obecný postup při testování statistických hypotéz 

      Klasický test 

1. Formulace výzkumné otázky ve formě 𝐻0 a 𝐻1.  

2. Volba hladiny významnosti  → představuje pravděpodobnost rizika chybného 

zamítnutí nulové hypotézy. 

3. Volba vhodného testu → volíme takovou testovou statistiku, u které známe rozdělení 

pravděpodobnosti při platnosti nulové hypotézy.  Charakter rozdělení závisí na tom, 

jakou hypotézu testujeme. 

4. Výpočet testové statistiky 𝑇(𝑋) → která je funkcí náhodného výběru 𝑋 a charakterizuje 

stupeň nesouladu mezi předpokladem o datech a hodnotách získaných na základě 

výběrových šetření.   

5. Vymezení kritického oboru → na základě rozdělení pravděpodobnosti testové statistiky 

𝑇(𝑋)  a zvolené hladiny významnosti určíme kritickou hodnotu (konkrétní kvantil), 

který odděluje podmnožiny oboru přijetí a oboru zamítnutí nulové hypotézy. 

6. Rozhodnutí o nulové hypotéze → posouzení toho, zdali vypočtená hodnota testové 

statistiky 𝑇(𝑋) spadá do oboru přijetí 𝑊1−𝛼  nulové hypotézy či nikoli.  

7. Interpretace výsledků provedeného testu → výsledek testu neurčuje, jak velká shoda  

je mezi skutečností a testovanou hypotézou.  

Uvedený postup testování provádíme s určitou úpravou i tehdy, když data zpracováváme 

ve statistickém programu. V takovém případě není srovnávána testová statistika s kritickou 

hodnotou (klasický přístup), ale rozhodnutí o výsledku testu je spojeno s výpočtem p-hodnoty. 

𝑷-hodnota testu kvantifikuje pravděpodobnost výskytu hodnoty testovací statistiky  

za podmínky, že nulová hypotéza platí. Udává nejnižší možnou hladinu významnosti 𝛼 pro 

zamítnutí nulové hypotézy. Hodnota 𝑃-hodnota konstruovaná pro libovolný test se na rozdíl  

od hodnoty testového kritéria stává univerzálním prostředkem pro rozhodování o výsledku 

testování 

      Čistý test významnosti 

1. Formulace výzkumné otázky ve formě  𝐻0 a 𝐻1.  

2. Hladina významnosti → nepotřebujeme znát jako vstupní údaj. Výsledek testu 

umožňuje rozhodnout, na jaké hladině významnosti můžeme nulovou hypotézu 

zamítnout nebo nezamítnout. 

3. Volba vhodného testu.  
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4. Výpočet testové statistiky.  

5. Výpočet 𝑝-hodnoty → 𝑝-hodnota je nejnižší hladina významnosti, při které lze ještě 

zamítnout nulovou hypotézu.  

6. Rozhodnutí o nulové hypotéze →  

a) je-li 𝑝-hodnota ≤ 𝛼, pak 𝐻0 zamítáme; 

b) je-li 𝑝-hodnota > 𝛼, pak 𝐻0 nezamítáme. 

7. Interpretace výsledků provedeného testu.  

Testy můžeme rozlišovat podle počtu výběrových souborů na testy: 

1. Jednovýběrové → jeden náhodný výběr, který je pozorován za stejných podmínek. 

2. Dvouvýběrové → dva náhodné výběry za dvojích různých podmínek; 

nezávislé (dva nezávislé náhodné výběry), 

závislé (jeden náhodný výběr z dvourozměrného rozdělení).  

3. Vícevýběrové → více než dva náhodné výběry. 

Dále testy dělíme podle znalosti typu rozdělení a parametrů daného rozdělení na:  

1. Parametrické → vycházejí z předpokladu dostatečně velkého rozsahu výběru  

a znalosti jeho rozdělení. 

2. Neparametrické → nezávisí na rozdělení (neznáme typ ani parametry rozdělení 

populace). 
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Shrnutí kapitoly 

Testování statistických hypotéz, je jeden z důležitých úkolů matematické statistiky.  Cílem 

testování je na základě informací z výběrového souboru usuzovat na charakter celé populace. 

Je důležité, aby výběrový soubor byl reprezentativním zástupcem základního souboru. 

Statistická hypotéza je jakýkoliv předpoklad či tvrzení týkající se neznámých parametrů, 

tvaru rozdělení nebo dalších vlastností populace.  

Nulová hypotéza (𝑯𝟎) je předpoklad, jehož platnost ověřujeme. Obvykle vyjadřuje 

rovnovážný stav nebo nepřítomnost rozdílu.  

Alternativní hypotéza (𝑯𝟏) popírá platnost nulové hypotézy. Přijímáme ji v případě, že 

nulovou hypotézu zamítneme.  

Statistický test je rozhodovací postup, který nám na základě náhodného výběru pomůže 

ověřit platnost hypotézy. Klíčovým prvkem je testová statistika, která kvantifikuje míru 

nesouladu mezi hypotézou a daty. 

Při rozhodování existuje riziko chyb. Chyba 1. druhu (𝜶): Zamítneme nulovou hypotézu, 

i když je pravdivá. Chyba 2. druhu (𝜷) nastane tehdy, když nezamítneme nulovou hypotézu, 

i když je nepravdivá.  

Síla testu (1−𝛽) je pravděpodobnost, že test správně odhalí neplatnost nulové hypotézy. 

Snížení chyby 1. druhu má za následek zvýšení chyby 2. druhu a naopak. Jediný způsob, jak 

snížit obě chyby současně, je zvětšit rozsah výběru. 
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9 Kontrolní otázky 

1. Co je hlavním úkolem testování statistických hypotéz?  

2. Jaký je rozdíl mezi parametrickou a neparametrickou hypotézou?  

3. Vysvětlete rozdíl mezi nulovou (𝐻0) a alternativní (𝐻1) hypotézou.  

4. Co vyjadřuje hladina významnosti?  

5. Definujte chybu 2. druhu?  

6. Jak spolu souvisí hladina významnosti  a pravděpodobnost chyby 2. druhu 𝛽?  

7. Co je testová statistika 𝑇(𝑋)?  

8. Co se stane, pokud vypočtená hodnota testovacího kritéria 𝑇(𝑋) spadne do kritického 

oboru?  

9. Jaký je doporučený obecný postup při testování statistických hypotéz?  

10. Co je 𝑝-hodnota testu a jak se používá k rozhodnutí o nulové hypotéze?  

11. Jaké typy alternativních hypotéz rozlišuje?  
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10 PARAMETRICKÉ TESTY 

Parametrické testy jsou statistické metody, jež využíváme pro testování hypotéz o neznámých 

parametrech rozdělení náhodné veličiny. Klíčovým předpokladem pro jejich použití je znalost 

typu rozdělení sledované veličiny. U všech níže uvedených parametrických testů budeme 

předpokládat normálně rozdělenou populaci. 

Ověřování tohoto předpokladu provádíme v rámci průzkumové analýzy dat pomocí 

grafických nástrojů (histogramy, Q-Q grafy, Box-ploty) a testů normality (Shapiro-Wilkův, 

Kolmogorův-Smirnovův test). Data, u kterých se prokáže porušení předpokladu, je možné 

normalizovat pomocí transformace. Data, která nelze transformovat, jsou asymetricky 

rozložená, nebo jsou diskrétní, analyzujeme pomocí neparametrický metod. 

10.1 Jednovýběrové parametrické testy 

Ve statistice často potřebujeme zjistit, zda se určitá hodnota (např. průměrná výška populace, 

příjem, nebo průměrný počet prodaných výrobků) skutečně liší od předpokládané či referenční 

hodnoty.  

Jednovýběrové testy nám umožňují dělat závěry o charakteru chování celé populace na 

základě dat získaných z jednoho reprezentativního výběru. Na základě jednoho výběrového 

souboru rozhodujeme, zda neznámý populační parametr 𝜃 je nebo není roven určité 

předpokládané číselné hodnotě, či zda je (není) neznámý parametr větší (menší) než 

předpokládaná číselná hodnota 𝜃0 (předpoklad, norma). 

10.1.1 Test o populačním rozptylu 

Test o populačním rozptylu nám na základě dat z náhodného výběru umožňuje posoudit, zda se 

populační rozptyl 𝜎2, odhadnutý z výběrového rozptylu 𝑠2, statisticky významně liší od 

předpokládané hodnoty 𝜎0
2. Jinými slovy, ověřujeme, jestli je zjištěný rozdíl způsobený 

náhodnými vlivy, nebo je statisticky významný (signifikantní). 

Testová statistika se řídí chí-kvadrát rozdělením s 𝑛−1 stupni volnosti. Je to základní 

rozdělení pro testy o rozptylu.  
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𝑯𝟎 𝑯𝟏 p-hodnota 𝑻(𝑿) 

𝜎2 = 𝜎0
2  

𝜎2 < 𝜎0
2 p = P (T ≤ 𝑥𝐾) = F0 (𝑥𝐾) 

𝑲 =
𝒏 − 𝟏

𝝈𝟎
𝟐

𝒔𝟐 ~  𝝌𝜶(𝒏−𝟏)
𝟐  (10.1) 𝜎2 > 𝜎0

2 p = P (T ≥ 𝑥𝐾) = 1 – F0 (𝑥𝐾) 

𝜎2 ≠ 𝜎0
2 2 ∙ 𝑚𝑖𝑛{𝐹0(𝑥𝐾); 1 − 𝐹0(𝑥𝐾)} 

Kde: 𝜎2 … populační rozptyl, 

 𝜎0
2  … předpokládána (hypotetická) hodnota rozptylu, 

 𝑠 2  … výběrový rozptyl, 

 𝑛 … rozsah výběrového souboru, 

 𝝌𝜶
𝟐 … kritická hodnota 𝑐ℎí-kvadrát rozdělení pro (𝑛 − 1) stupních volnosti. 

10.1.2 Testy  o populačním průměru 

Máme-li normálně rozdělenou populaci s neznámou střední hodnotou 𝜇 s neznámým rozptylem 

𝜎2, používáme k ověření předpokladu, že se populační průměr rovná určité hypotetické hodnotě 

jednovýběrový 𝑡-test. 

Má-li populace normální rozdělení o známém rozptylu 𝜎2, používáme tzv. jednovýberový 

𝑈-test. S takovou situací se v praxi většinou nesetkáme, test je zde uveden především pro 

úplnost. 

𝑯𝟎 𝑯𝟏 p-hodnota 𝑻(𝑿) 

𝜇 = 𝜇0 

𝜇 <  𝜇0 p = P (T ≤ 𝑥𝑡) = F0 (𝑥𝑡) 

 𝒕 =
𝑿̅ − 𝝁𝟎

𝒔
√𝒏  ~ 𝒕𝜶(𝒏−𝟏) 

 𝑼 =
𝑿̅−𝝁𝟎

𝝈
√𝒏  ~ 𝒖𝜶 

(10.2) 

𝜇 >  𝜇0 p = P (T ≥ 𝑥𝑡) = 1 – F0 (𝑥𝑡) 

𝜇 ≠  𝜇0 2 ∙ 𝑚𝑖𝑛{𝐹0(𝑥𝑡); 1 − 𝐹0(𝑥𝑡)} 
(10.3) 

Kde: 𝜇       … populační průměr, 

 𝜇0 … předpokládána (hypotetická) hodnota, 

 𝑥̅ … nestranný výběrový průměr, 

 𝑠   … výběrová směrodatná odchylka, 

 𝜎 … populační směrodatná odchylka, 

 𝑛 … rozsah výběrového souboru, 

 𝑡𝛼 … kritická hodnota Studento t-rozdělení pro (𝑛 − 1) stupních volnosti, 

 𝑢𝛼 … kritická hodnota normovaného normálního rozdělení. 
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Příklad 10.1 

Byl vysloven předpoklad, že průměrná cena notebooku je 22 000 Kč. Pomocí údajů  

z datového souboru „Notebook" ověřte na 5% hladině významnosti, zda se průměrná cena 

u sledovaných notebooků shoduje s vysloveným předpokladem. 

Řešení 

Proměnná cena notebooku se řídí normálním rozdělením. K testování nulové hypotézy 𝐻0: 

𝜇 = 22 000 oproti oboustranné alternativě 𝐻1: 𝜇 ≠ 22 000 použijeme jednovýběrový t-test.  

SPSS 

Analyze → Compare Means and Proportions → One-Sample T Test → do okna 

Test Variable(s) vložíme proměnnou Cena, do okna Test Value napíšeme 

referenční hodnotu 22 000 → OK 

Výstup z programu One-Sample Test je výsledek 𝑡-testu pro průměrnou cenu notebooků. 

Na tomto příkladu si podrobněji popíšeme, co jednotlivé hodnoty v tabulce znamenají a jak 

se interpretují. Obdobné výstupy budou prezentovat i výsledky dalších parametrických 

testů, ty už nebudeme popisovat takto detailně. 

 

Test Value = 22000 → hodnota, proti které testujeme nulovou hypotézu.  

𝒕 = -0,696 → vypočtená hodnota testové statistiky. 

df = 149 → počet stupňů volnosti pro tento test, který se vypočítá jako 𝑛−1, kde 𝑛 je počet 

pozorování (v našem případě 150). 

Significance One-Sided  𝒑 = 0,244 → tato 𝑝-hodnota se používá pro jednostranný test.  

Significance Two-Sided  𝒑 = 0,487→ tato 𝑝-hodnota se používá pro oboustranný test. 

Protože je tato hodnota vyšší než 0,05 (naše hladina významnosti), nezamítáme nulovou 

hypotézu. 

Mean Difference = -507,560 → průměrný rozdíl mezi naším výběrovým průměrem  

a testovanou hodnotou. 

95% Confidence Interval of the Difference (Lower, Upper) → 95% interval spolehlivosti 

pro rozdíl mezi průměry. Pokud tento interval obsahuje nulu, nulovou hypotézu 

nezamítáme.  
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Pokračování příkladu 10.1 

Na 5% hladině významnosti jsme nezamítli nulovou hypotézu, která tvrdila, že průměrná 

cena notebooku je 22 000 Kč. Znamená to, že ačkoli se průměrná cena notebooků v našem 

výběru (21 492,44 Kč) mírně liší od testované hodnoty, tento rozdíl není statisticky 

významný. Nelze vyloučit, že je způsoben pouze náhodou. 

 

Pozor! Zásada statistického testování: Statistický test nedokazuje, že nulová hypotéza je 

pravdivá. Pouze vyhodnocuje, zda existuje dostatek důkazů pro její zamítnutí. To, že 

nemáme dostatek důkazů pro tvrzení, že se ceny liší, neznamená, že je dokázáno, že jsou 

stejné. Může se stát, že by větší nebo jiný vzorek dat tento rozdíl odhalil. 

10.1.3 Test o populačním podílu  

Test o populačním podílů neboli parametru 𝜋, je zaměřený především na testování vlastností 

kategoriálních dat. Testujeme nulovou hypotézu, že pravděpodobnost nastoupení náhodného 

jevu v populaci (populační relativní četnost) je „rovna“ předpokládané hypotetické 

pravděpodobnosti.  Za předpokladu dostatečně velkého rozsah výběrového souboru 𝑛 > 5/𝜋0 

je možné testovou statistiku 𝑇(𝑋) aproximovat normovaným normálním rozdělením. 

 

𝑯𝟎 𝑯𝟏 p-hodnota 𝑻(𝑿) 

𝜋 = 𝜋0 

𝜋 <  𝜋0 p = P (T ≤ 𝑥𝑢) = F0 (𝑥𝑢) 

𝑼 =
𝒑 − 𝝅𝟎

√𝝅𝟎(𝟏 − 𝝅𝟎)
√𝒏  ~ 𝒖𝜶 (10.4) 𝜋 >  𝜋0 p = P (T ≥ 𝑥𝑢) = 1 – F0 (𝑥𝑢) 

𝜋 ≠  𝜋0 2 ∙ 𝑚𝑖𝑛{𝐹0(𝑥𝑢); 1 − 𝐹0(𝑥𝑢)} 

Kde: 𝜋 … populační podíl (relativní četnost), 

 𝜋0 … předpokládaný podíl (relativní četnost), 

 𝑝 … výběrový podíl (relativní četnost), 

 𝑛 … rozsah výběrového souboru, 

 𝑢𝛼 … kritická hodnota normovaného normálního rozdělení. 

Pro menší rozsahy výběru, nebo v případě, že nejsou splněny podmínky pro aproximaci 

normálním rozdělením, se k testování parametru 𝜋 používají testy založené na binomickém 

rozdělení. Tyto testy počítají 𝑝-hodnotu přímo z pravděpodobnostní funkce binomického 

rozdělení. 
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Příklad 10.2 

Byl vysloven předpoklad, že podíl notebooků s herní grafickou kartou v celém souboru dat 

se rovná 15 %. S použitím údajů z výběrového datového souboru „Notebook" ověřte na 5% 

hladině významnosti, zda se podíl herních notebooků v základním souboru shoduje  

s vysloveným předpokladem.  

K testování nulové hypotézy 𝐻0: 𝜋 = 15 % (podíl notebooku s herní grafikou v základním 

souboru je 15 %), oproti oboustranné alternativě 𝐻1: 𝜋 ≠ 15 % použijeme jednovýběrový 

test o populačního podílu.  

Program SPSS nabízí k testování hypotézy o populačním podílu různé testy. Všechny mají 

stejné výchozí údaje, ale liší se v metodě výpočtu 𝒑-hodnoty a testové statistiky. My budeme 

používat test Score, který poskytuje spolehlivé výsledky pro dostatečně velké rozsahy 

výběrového souboru (v našem případě 𝒏 = 150) a vychází z normálního rozdělení, které 

aproximuje binomické rozdělení. 

   SPSS 

Analyze → Compare Means and Proportions → One-Sample Proportions → do 

okna Test Variable(s) vložíme proměnnou Grafika, v okně Define Success 

vybereme Value(s) a napíšeme zde kód herní grafické karty v našem případě 

hodnotu 3 → Tests zvolíme test Score a do okna Test Value napíšeme referenční 

hodnotu 0,15  → Continue → OK 

 

 

 

Test Value = 0,15 → předpokládaná hodnota podílu.  

Successes  = 19 → počet jednotek, které mají sledovanou vlastnost (19 notebooků má herní 

grafickou kartou).  

Trials = 150→ celkový počet pozorování ve vzorku (𝑛 = 150)  

Observed Proportion = 0,127 → podíl NB s herní grafickou kartou na celkovém rozsahu.  

Observed-Test Value  = -0,023 → rozdíl mezi pozorovaným podílem a předpokladem.  

Asymptotic Standard Error = -0,027 → směrodatná chyba odhadu podílu.  

Z = -0,800 → vypočtená hodnota testové statistiky.  

Significance One-Sided p  = 0,212 → 𝑝-hodnota pro jednostranný test.  

Significance Two-Sided p = 0,424 → 𝑝-hodnota pro oboustranný test. Protože je tato 

hodnota vyšší než 0,05 (naše hladina významnosti), nezamítáme nulovou hypotézu. 

Na základě provedeného testů se nepodařilo zamítnout nulovou hypotézu, že podíl 

notebooků s herní grafikou v populaci činí 15 %. 
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10.2 Dvouvýběrové parametrické testy 

V mnoha praktických situacích nás zajímá nejen to, zda se číselné charakteristiky jedné 

populace liší od určité pevné hodnoty, ale především to, zda se dvě různé skupiny liší navzájem 

ve vztahu k nějaké kvantitativní charakteristice, jako je například průměr, nebo rozptyl. A právě 

pro zodpovězení takovýchto otázek jsou určeny dvouvýběrové parametrické testy. 

10.2.1 Testy shody dvou populačních rozptylu 

Testy o rovnosti dvou rozptylů slouží k ověření toho, zda dva výběrové soubory pocházejí  

z rozdělení se stejným rozptylem. V podstatě ověřují, zda oba soubory vykazují přibližně stejný 

rozptyl sledované náhodné veličiny. 

Při testování shody dvou rozptylů, které jsou odhadnuty z nezávislých náhodných výběrů, 

se používá Fischerovo-Snedecorovo rozdělení. Toto rozdělení je asymetrické, což znamená, 

že 𝑝-hodnota se nepočítá symetricky na obě strany od středu, ale jako součet ploch, které jsou 

stejně extrémní jako pozorovaná hodnota. 

Nejpoužívanějším testem určeným pro testování shody rozptylů je Fisherův 𝑭-test. Test je 

založený na porovnání většího a menšího z obou odhadů rozptylů. Testuje se, zda je statisticky 

významný rozdíl v rozptylech, nikoli zda je rozptyl první skupiny větší než druhé skupiny. 

𝑯𝟎 𝑯𝟏 p-hodnota 𝑻(𝑿) 

𝜎1
2 = 𝜎2

2  
𝜎1

2 < 𝜎2
2 p = P (T ≤ 𝑥𝐹) = F0 (𝑥𝐹) 

𝑭 =
𝑠1

2

𝑠2
2  ~  𝑭(𝒏𝟏−𝟏;𝒏𝟐−𝟏)  (10.5) 

𝜎1
2 > 𝜎2

2 p = P (T ≥ 𝑥𝐹) = 1 – F0 (𝑥𝐹) 

Kde: 𝜎1
2,  𝜎2

2 … populační rozptyly, 

 𝑠1
2, 𝑠2

2  … výběrové rozptyly, 

 𝑛1, 𝑛2 … rozsahy náhodných výběrových souboru, 

 𝐹𝛼 … Fischer-Snedecorovo rozdělení pro (𝑛1 − 1; 𝑛2 − 1) stupňů volnosti. 

Kromě Fisherova 𝐹-testu se v praxi často používá Leveneův test, který je na rozdíl od  

𝐹-testu méně citlivý na porušení předpokladu normality dat.  Z tohoto důvodu je Leveneův test 

považován za robustnější a je často standardním výstupem v mnoha statistických programech. 

Zásadní výhodou Leveneova testu oproti 𝐹-testu je jeho univerzálnost: zatímco 𝐹-test je 

omezen pouze na porovnání dvou výběrů, Leveneův test umožňuje testovat shodu rozptylů  

nejen u dvou, ale i u více nezávislých výběrových souborů. Pro shodu rozptylu používáme 

termín homoskedasticita, rozdílnost rozptylu označujeme jako heteroskedasticitu.  
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Testy hypotéz o shodě dvou rozptylů se také nazývají testy homogenity a využívají se 

především jako první krok před testy shody dvou nezávislých průměrů. 

10.2.2 Testy shody dvou nezávislých populačních průměru 

Testy o shodě dvou nezávislých populačních průměru nám umožňují na základě nezávislých 

náhodných výběru porovnat střední hodnoty u dvou základních souborů (populací).  Formulace 

nulové hypotézy vychází z rovnosti mezi průměry jednotlivých nezávislých výběrů.  

Nezávislé výběry jsou takové výběry, kde se zjištěné údaje netýkají stejných prvků 

(spotřeba potravin u domácnosti v různých okresech, výše příjmů mužů a žen atd.).  

𝑯𝟎 𝑯𝟏 p-hodnota 

𝜇1 = 𝜇2 

𝜇1  <  𝜇2 p = P (T ≤ 𝑥𝑡) = F0 (𝑥𝑡) 

𝜇1  >  𝜇2 p = P (T ≥ 𝑥𝑡) = 1 – F0 (𝑥𝑡) 

𝜇1  ≠  𝜇2 2 ∙ 𝑚𝑖𝑛{𝐹0(𝑥𝑡); 1 − 𝐹0(𝑥𝑡)} 

Kde: 𝜇1,  𝜇2 … populační průměry. 

Při srovnávání průměrů dvou nezávislých skupin se nejčastěji používá dvouvýběrový  

𝒕-test. Ten má však jeden klíčový předpoklad shodu rozptylů v obou populacích.  

V případě, nesplnění předpokladu shody rozptylů (ověření pomocí výše uvedeného 𝐹-testu 

nebo Levenova testu) používáme pro porovnání středních hodnot dvou normálních populací 

Aspin-Welchův test, který je robustní alternativa ke Studentovu dvouvýběrovému 𝑡-testu 

v případě různých rozptylů (heterogenity rozptylů). 

 Test 𝑻(𝑿)  

Shoda 

rozptylu 

Dvouvýběrový 

t-test 
𝑡 =

(𝑥̅1 − 𝑥̅2)

√
𝑠1

2(𝑛1 − 1) + 𝑠2
2(𝑛2 − 1)

𝑛1 + 𝑛2 − 2

 √
𝑛1𝑛2

𝑛1 + 𝑛2
 ~ 𝑡𝛼(𝑛1+𝑛2−2) 

  

(10.6) 

Různé 

rozptyly 

 

Aspin-Welchův 

test 
𝑡 = 

(𝑥̅1−𝑥̅2)

 √
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

 ~ 𝑡𝛼(𝜈),   kde 𝜈 ≅
(

𝑠1
2

𝑛1
+

𝑠2
2

𝑛2
)

2

(
𝑠1

2

𝑛1
)

2
1

𝑛1−1
+(

𝑠2
2

𝑛2
)

2
1

𝑛2−1

 (10.7) 

Kde: 𝑥̅1, 𝑥̅2       … nestranné výběrové průměry, 

 𝑠1
2, 𝑠2

2  … výběrové rozptyly, 

 𝑛1, 𝑛2 … rozsahy náhodných výběrových souboru, 

 𝑡𝛼 … Studento t-rozdělení pro (𝑛1+𝑛2 − 2) stupních volnosti, 

 𝑡𝛼() … Studento t-rozdělení pro () stupňů volnosti. 
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Příklad 10.3 

Byl vysloven předpoklad, že průměrná cena notebooků s hliníkovým rámem je vyšší než 

průměrná cena notebooků s plastovým rámem. Pomocí údajů z datového souboru 

„Notebook" ověřte na 5% hladině významnosti, zda existuje statisticky významný rozdíl 

mezi průměrnými cenami obou skupin ve prospěch hliníkového rámu. 

Řešení 

Postup testování hypotézy o shodě dvou průměrů si rozdělíme do dvou kroků. 

V prvním kroku budeme testovat nulovou hypotézu o shodě rozptylů 𝐻0 ∶ 𝜎1
2 = 𝜎2

2.   

Na základě výsledků se rozhodneme, jaký test použít pro testování dvou populačních 

průměrů. 

V druhém kroku budeme testovat nulovou hypotézu o shodě dvou populačních průměrů 

𝐻0: 𝜇1  =  𝜇2 oproti jednostranné alternativě 𝐻1: 𝜇1  <  𝜇2.   

SPSS 

Analyze → Compare Means and Proportions → Independent-Samples T Test → 

do okna Test Variable(s) vložíme proměnnou Cena, do okna Grouping Variable 

vložíme proměnnou Materiál →  Define Groups zde zkontrolujeme kódy 

proměnných → Continue → OK 

 

Deskriptivní statistiky (Group Statistics) → z tohoto výstupu vidíme, že průměrná cena 

notebooků s hliníkovým rámem (22 997,85 Kč) je vyšší než průměrná cena notebooků  

s plastovým rámem (20 645,65 Kč). Zde ale nevíme, jestli je tento rozdíl statisticky 

významný, nebo je jen náhodný. 

 

 

 

Testování hypotéz (Independent Samples Test)  

Test shody rozptylů (Leveneův test) potvrdil, že rozptyly cen u obou typů materiálů nejsou 

shodné (𝑝 < 0,001).  
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Pokračování příkladu 10.3 

Z testu shody průměrů (Aspin-Welchův test) vyplývá, že 𝑝 = 0,028. Protože je tato hodnota 

menší než 0,05 (naše hladina významnosti), zamítáme nulovou hypotézu. 

Na 5% hladině významnosti bylo prokázáno, že průměrná cena notebooků s hliníkovým 

rámem je statisticky významně vyšší než průměrná cena notebooků s plastovým rámem. 

Zjištěný rozdíl v ceně tedy není náhodný. 

 

POZOR! V případě, že by byla prokázána shoda rozptylů (homogenita) je nutné provádět 

testování shody průměrů pomocí dvouvýběrového 𝒕-testu. 

10.2.3 Test o shodě dvou závislých populačních průměru 

V předchozích případech jsme se zabývali porovnáváním dvou nezávislých souborů. Nyní se 

zaměříme na situace, kdy chceme testovat střední hodnoty dvou závislých výběrů.  

To znamená, že srovnáváme vlivy dvou různých faktorů na jednom měřeném objektu. 

Vycházíme přitom z předpokladu, že jeden náhodný výběr obsahuje znaky opakovaně měřené 

na stejných statistických jednotkách (tzv. párová měření), a proto se data řídí dvourozměrným 

rozdělením. 

Při hodnocení rozdílů mezi porovnávanými výběry používáme párový 𝒕-test, který  

je ekvivalentní jednovýběrovému 𝑡-testu pro výběrový soubor diferencí. 

Na základě párových výběrů získáváme dvojice hodnot 𝑥𝑖 (𝑖 = 1, 2,.. , 𝑛), 𝑦𝑖 (𝑖 = 1, 2,.. , 𝑛). 

Pro každou dvojici pozorování (𝑥𝑖, 𝑦𝑖 vypočteme diferenci 𝑑𝑖 = 𝑥𝑖  – 𝑦𝑖  (𝑖 = 1,.., n). Získaný 

soubor diferencí 𝑑1, 𝑑1, …, 𝑑𝑛 považujeme za náhodný výběr o rozsahu 𝑛 z normálně 

rozděleného základního souboru.  

𝑯𝟎 𝑯𝟏 p-hodnota 𝑻(𝑿) 

𝜇𝑑 = 0 

𝜇𝑑  <  0 p = P (T ≤ 𝑥𝑡) = F0 (𝑥𝑈) 

𝒕 =
𝒅̅

𝒔𝒅
√𝒏  ~ 𝒕𝜶(𝒏−𝟏) (10.8) 𝜇𝑑  >  0 p = P (T ≥ 𝑥𝑡) = 1 – F0 (𝑥𝑡) 

𝜇𝑑 ≠  0 2 ∙ 𝑚𝑖𝑛{𝐹0(𝑥𝑡); 1 − 𝐹0(𝑥𝑡)} 

 

Kde: 𝜇𝑑 … populační průměr diferencí, 

  𝑑̅       … nestranný průměr diferencí, 

 𝑠𝑑 … výběrová směrodatná odchylka diferencí, 

 𝑛 … rozsah náhodného výběrového souboru, 

 𝑡𝛼 … Studento t-rozdělení pro 𝑛 − 1 stupňů volnosti. 
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Příklad 10.4 

Bylo vysloveno tvrzení, že průměrná prodejní cena notebooků se liší od doporučené ceny 

výrobcem. Pomocí dat z výběrového souboru „Notebook", který obsahuje dvojice cen pro 

stejné modely, ověřte na 5% hladině významnosti, zda existuje statisticky významný rozdíl  

v cenách. 

Řešení 

K testování nulové hypotézy 𝐻0: 𝜇𝑑 = 0 oproti oboustranné alternativě  

𝐻1: 𝜇𝑑 ≠ 0 použijeme párový t-test. 

SPSS 

Analyze → Compare Means and Proportions → Paired-Samples T Test →  

do okna Paired Variable(s) pod Variable 1 vložíme proměnnou Cena, pod 

Variable 2 vložíme proměnnou Doporučená cena →  OK 

 

 

 

 

Z prvního výstupu vidíme, že průměrná cena notebooku v prodejně (21 492,44 Kč) je mírně 

nižší než doporučená cena výrobcem (21 572,67 Kč). Tento rozdíl činí přibližně 80 Kč. 

Stejně jako u jiných deskriptivních statistik, ani zde nevíme, jestli je tento rozdíl statisticky 

významný. 

 

 

 

 

Z výsledků párového 𝑡-testu vyplývá, že testová statistika má hodnotu -6,860 a 𝑝-hodnota 

(pro oboustranný test) je < 0,001.  

Protože je 𝑝-hodnota menší než standardní hladina významnosti 0,05, zamítáme nulovou 

hypotézu. Na 5% hladině významnosti existují dostatečné statistické důkazy, které 

potvrzují, že průměrná prodejní cena notebooků se statisticky významně liší od doporučené 

ceny výrobcem. 
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10.2.4 Test o populačních podílech  

Test o populačních podílech, je zaměřený na testování rozdílů mezi dvěma populacemi 

s alternativním rozdělením s parametry 𝜋1 a  𝜋2. Za předpokladu dostatečně velkých rozsahů 

výběrových souboru 𝑛1 a 𝑛2 (𝑛1 > 100, 𝑛2 > 100) je možné testovou statistiku 

𝑇(𝑋) aproximovat normovaným normálním rozdělením. 

𝑯𝟎 𝑯𝟏 p-hodnota 

𝜋1 = 𝜋2 

𝜋1  <  𝜋2 p = P (T ≤ 𝑥𝑢) = F0 (𝑥𝑢) 

𝜋1  >  𝜋2 p = P (T ≥ 𝑥𝑢) = 1 – F0 (𝑥𝑢) 

𝜋1  ≠  𝜋2 2 ∙ 𝑚𝑖𝑛{𝐹0(𝑥𝑢); 1 − 𝐹0(𝑥𝑢)} 

𝑻(𝑿) 

𝑼 =
𝒑𝟏 − 𝒑𝟐

√
𝒎𝟏 + 𝒎𝟐
𝒏𝟏 + 𝒏𝟐

(𝟏 −
𝒎𝟏 + 𝒎𝟐
𝒏𝟏 + 𝒏𝟐

) (
𝟏

𝒏𝟏
+

𝟏
𝒏𝟐

)

  ~ 𝒖𝜶 (10.9) 

Kde: 𝜋1 , 𝜋2 … populační podíly (relativní četnosti), 

 𝑝1, 𝑝2 … výběrové podíly (relativní četnosti), 

 𝑛1, 𝑛2 … rozsahy výběrových souborů, 

 𝑚1, 𝑚2 … rozsahy souborů, které jsou nositelem sledovaného znaku, 

 𝑢𝛼 … kritická hodnota normovaného normálního rozdělení. 

Pro menší rozsahy výběru, nebo v případě, že nejsou splněny podmínky pro aproximaci 

normálním rozdělením, se stejně jako u jednovýběrových testů o parametru 𝜋 používají testy 

založené na binomickém rozdělení.  

Příklad 10.5 

Výzkum trhu s notebooky si klade za cíl ověřit zajímavý předpoklad. Zajímá nás, zda podíl 

notebooků, které nemají numerickou klávesnici, je odlišný v závislosti na materiálu, ze 

kterého jsou vyrobeny. S použitím dat z náhodného výběrového souboru „Notebook" ověřte 

na 5% hladině významnosti, zda je tento předpoklad správný. 

Řešení 

Testujeme nulovou hypotézu o shodě dvou populačních podílů 𝐻0: 𝜋1  =  𝜋2 oproti 

oboustranné alternativě 𝐻1: 𝜋1  ≠  𝜋2.   

Program SPSS nabízí k testování hypotézy o populačním podílu různé testy. Všechny mají 

stejné výchozí údaje, ale liší se v metodě výpočtu p-hodnoty a testové statistiky. My budeme  
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Pokračování příkladu 10.5 

používat Waldův test, který je při velkých výběrech založen na asymptotickém rozdělení 

testové statistiky, které se blíží normálnímu rozdělení.  

SPSS 

Analyze → Compare Means and Proportions → Independent-Samples 

Proportions → do okna Test Variable(s) vložíme proměnnou Klavesnice, v okně 

Define Success vybereme Value(s) a napíšeme zde kód pro hodnotu ne v našem 

případě hodnotu 2 → do okna Grouping Variable vložíme proměnnou Materiál, 

v okně Define Success vybereme Value(s) a napíšeme zde kódy pro  

Group 1: 1 pro Group 2: 2; → Tests zvolíme test Wald → Continue → OK 

 

Z prvního výstupu vidíme, že z celkového počtu 150 notebooků je 96 plastových  

a 54 hliníkových. Z 96 plastových notebooků bylo zjištěno, že jich 50 (52,1 %) nemá 

numerickou klávesnici. U hliníkových modelů byl podíl notebooků bez numerické 

klávesnice vyšší a dosáhl hodnoty 59,3 % (32 z 54). 

 

Druhý výstup znázorňuje výsledky dvouvýběrového testu. Hodnota testové statistiky  

je -0,853 a 𝑝-hodnota pro oboustrannou alternativu, kterou porovnáváme s hladinou 

významnosti alfa, je 0,393.  

Z těchto výsledků plyne, že na 5% hladině významnosti nelze zamítnout nulovou hypotézu. 

To znamená, že neexistuje statisticky významný rozdíl v podílu notebooků bez numerické 

klávesnice mezi plastovými a hliníkovými modely. 

10.3 Vícevýběrové parametrické testy 

Dosud jsme se věnovali porovnávání jednoho nebo dvou náhodných výběrů. V praxi se však 

často setkáváme se situacemi, kde je potřeba porovnávat tři nebo více výběrů najednou. Právě 

k tomu slouží vícevýběrové parametrické testy. 

Jejich hlavním cílem je zjistit, zda se parametry mezi více než dvěma náhodnými výběry 

statisticky významně liší, nebo zda pocházejí ze stejné populace. Tyto testy jsou důležité, 
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protože nám umožňují komplexně analyzovat vliv jedné kategoriální proměnné s více než 

dvěma úrovněmi na kvantitativní proměnnou (např. vliv velikosti úhlopříčky na cenu 

notebooků). To vše bez nutnosti provádět sérii opakovaných testů, což by zvyšovalo riziko 

chybného závěru a také by došlo k zvýšení chyby 1. druhu nad stanovenou mez (obr. 10.3). 

Obrázek: 10.1  Proč nelze používat opakované dvouvýběrové 𝒕 - testy? 

 

Náhodný výběr 1 (S1), náhodný výběr 2 (S2), náhodný výběr 3 (S3), ……. 

Porovnáním dvojici souborů pomocí t-testu. 

Pravděpodobnost nesprávného zamítnutí 𝐻0 je pro každý test 5 %. 

Pravděpodobnost, že nedojde k chybě 1. druhu je pak 0,95 ∙ 0,95 ∙ 0,95 = 0,857 

 

Pravděpodobnost, že dojde alespoň k chybě 1. druhu je 1 – 0,857 = 0,143! 

10.3.1 Test o shodě více jak dvou populačních rozptylů 

Testy k ověřování hypotéz o rovnosti více než dvou rozptylů (homoskedasticity) jsou 

zobecněním dvouvýběrového testu o shodě rozptylů. Tyto testy se zaměřují na analýzu 

variability dat uvnitř jednotlivých skupin a tvoří nedílnou součást předběžné analýzy dat před 

prováděním složitějších parametrických testů, jako je například analýza rozptylu (ANOVA). 

Nejčastěji používaným testem pro ověření homogenity rozptylů je Leveneův test. Jak již 

bylo uvedeno, jeho velkou výhodou je robustnost vůči odchylkám od normality dat, což 

umožňuje jeho použití i při mírném porušení normality. Testová statistika Leveneova testu 

je založena na analýze rozptylu absolutních hodnot odchylek od skupinového mediánu. 

𝑯𝟎 𝑯𝟏 p-hodnota 𝑻(𝑿) 

𝝈𝟏
𝟐 = 𝝈𝟐

𝟐 =  … = 𝝈𝒌
𝟐

 neplatí 𝑯𝟎 
p = P (T ≤ 𝑥𝐹) = F0 (𝑥𝐹) 

𝑭𝑳𝒆𝒗𝒆𝒏𝒆~  𝑭(𝑘−𝟏;𝑛−𝒌)  
p = P (T ≥ 𝑥𝐹) = 1 – F0 (𝑥𝐹) 

Pokud výsledek testu prokáže, že rozptyly nejsou shodné (tedy dojde k heteroskedasticitě), 

je při dalším testování (například průměrů) nutné zvolit alternativní postup. Můžeme použít 
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buď testy neparametrické, nebo provést úpravu dat například pomocí jejich transformace. Další 

možností je použít parametrické testy s korekcí pro nerovné rozptyly (např. Welchův F-test pro 

ANOVA). 

10.3.2 Test o shodě více jak dvou populačních průměrů 

Analýza rozptylu (ANOVA) slouží k porovnání průměrů tří a více nezávislých náhodných 

výběrů. Cílem je zjistit, zda existuje statisticky významný rozdíl mezi průměry těchto skupin. 

ANOVA test zkoumá, zda je variabilita mezi výběry (tj. rozdíly mezi průměry výběrů) větší 

než variabilita uvnitř jednotlivých výběrů (rozdíly mezi daty v rámci jednoho výběru). Pokud 

je rozdíl mezi výběry velký, je pravděpodobné, že průměry nejsou stejné. 

Analýza rozptylu je statistická metoda, které nám umožňují provádět vícenásobné 

porovnávání středních hodnot. ANOVA byla původně vypracována pro vyhodnocení výsledků 

polních pokusů v zemědělství. V současnosti představuje velmi obecný statistický postup, jehož 

se využívá v přírodních i společenských vědách, a také při zpracování kvantitativních výsledků 

experimentů.  

Správné použití analýzy rozptylu je vázáno na splnění následujících předpokladů:  

▪ Normalita rozdělení náhodných veličin – obecný předpoklad všech parametrických testů. 

Ověřování normality se provádí pomocí testů normality a grafického znázornění dat. 

▪ Statistická nezávislost náhodných chyb – obecný předpoklad všech nezávislých 

parametrických testů.  Hodnoty jednoho výběru nejsou ovlivňovány hodnotami jiného 

výběrů (např. výška studentů na jedné škole nemá žádný vliv na výšku studentů na druhé 

škole – výběry jsou nezávislé, protože jsou prováděny v oddělených populacích). Ověřování 

normality je možné provádět například pomocí testů rezidui.  

▪ Homogenita rozptylů neboli homoskedasticita – variabilita dat je konzistentní. Rozptyly 

náhodných výběrů jsou přibližně stejné. Tento předpoklad se ověřuje testy homogenity. 

ANOVA je poměrně robustní statistická metody vhledem k částečnému porušeni 

předpokladů normality či homoskedasticity, zejména v případě většího rozsahu sledovaných 

dat. Normalitu potažmo narušenou homoskedasticitu, lze řešit například pomocí logaritmické 

transformace dat. Zvýšenou pozornost je však třeba věnovat nesplnění předpokladu statistické 

nezávislosti náhodných chyb, které může vést často k chybným závěrům. Z uvedeného vyplývá, 

že pokud dojde k „mírnému“ porušení předpokladu je možné ANOVU použít. Obecně platí,  

že čím je rozsah výběru větší, tím je možné očekávat vyšší robustnost vůči nesplnění podmínek. 
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Podle počtu sledovaných faktorů rozdělujeme analýzu rozptylu na:  

Analýzu rozptylu jednoduchého třídění – posuzujeme vliv působení jednoho faktoru 

(nejčastěji používaná). 

Analýzu rozptylu dvojného třídění – posuzujeme vliv působení dvou faktorů na sledovanou 

charakteristiku (parametr) výběrového souboru. 

Vícefaktorové modely analýzy rozptylu – posuzuje působení více než dvou faktorů (obtížné 

sestavení vhodného modelu a interpretace výsledků). 

Podle počtu pozorování na: 

Nevyvážený model – neortogonální model (počty pozorování v každém z náhodných výběrů 

jsou různé), 

Vyvážený model – ortogonální model (počty pozorování v každém z náhodných výběrů jsou 

shodné). 

POZOR! Analýza rozptylu se nezabývá přímo porovnáváním rozptylů, ale pomocí rozkladu 

celkové variability dat usuzuje o rozdílech mezi průměry. 

JEDNOFAKTOROVÁ ANALÝZA ROZPTYLU 

Analýza rozptylu při jednoduchém třídění předpokládá, že na k-náhodných výběrů, které jsou 

na sobě nezávislé působí jeden faktor, který sledujeme na několika jeho úrovních (skupinách).  

Úrovně faktoru: 

 - určité množství kvantitativního faktoru,  

 - určitá variantu kvalitativního faktoru.  

Obrázek 10.2:  Schéma jednofaktorové analýzy rozptylu 

 

 

 

 

 

 

 

Naměřené hodnoty uspořádáme podle jednoho třídícího kritéria (obr. 10.2), tzn. podle 

úrovní sledovaného faktoru (𝑘), do tolika tříd (𝑛𝑖), na kolika úrovních (skupinách) tento faktor 

sledujeme.  
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Podstatou ANOVY je, rozklad celkové variability do dvou částí, na variabilitu mezi skupinami 

a variabilitu uvnitř skupin. 

𝑺 =  𝑺𝟏  +  𝑺𝒓 

𝑆  . .  celková variabilita (celkový součet čtverců) variability celého pokusu. 

𝑆1 . .  variabilita mezi skupinami část variability, charakterizuje vliv faktoru.  

𝑆𝑟 . . variabilita uvnitř skupin část variability, charakterizuje působení náhodných vlivů, 

případně jiných neuvažovaných faktorů. 

Zdroj variability 
Součet čtverců 

odchylek 

Stupně 

volnosti 

Výběrový 

rozptyl 

Mezi skupinami 𝑺𝟏 = ∑ 𝒏𝒊(𝒙𝒊 − 𝒙̅)𝟐

𝒌

𝒊=𝟏

 𝒌 − 𝟏 
  

𝒔𝟏
𝟐 =

𝑺𝟏

𝒌 − 𝟏
 

Uvnitř skupin 𝑺𝒓 = ∑ ∑(𝒙𝒊𝒋 − 𝒙̅𝒊)
𝟐

𝒏𝒊

𝒋=𝟏

𝒌

𝒊=𝟏

 ∑ 𝒏𝒊 − 𝒌

𝒌

𝒊=𝟏

 𝒔𝒓
𝟐 =

𝑺𝒓

∑ 𝒏𝒊 − 𝒌𝒌
𝒊=𝟏

 

Celková 𝑺 = ∑ ∑(𝒙𝒊𝒋 − 𝒙̅)
𝟐

𝒏𝒊

𝒋=𝟏

𝒌

𝒊=𝟏

 ∑ 𝒏𝒊 − 𝟏

𝒌

𝒊=𝟏

   

Kde: 𝜇1, 𝜇2, . . , 𝜇𝑘     … neznámé populační průměry,  

 𝑥̅1, 𝑥̅2, . . , 𝑥̅𝑘 … výběrových průměrů, 

 𝑠1
2 … výběrový rozptyl mezi skupinami, 

 𝑠𝑟
2 … výběrový rozptyl uvnitř tříd (reziduální rozptyl), 

 𝑛 … celkový rozsah náhodných výběrů, 

 𝑘 … počet náhodných výběrů, 

 𝐹𝛼 … Fischer-Snedecorovo rozdělení pro (𝑘 − 1; 𝑛 − 𝑘) stupňů 

volnosti. 

Na základě 𝑘-nezávislých náhodných výběrů testujeme nulovou hypotézu, která uvádí, že 

mezi skupinovými průměry nejsou žádné rozdíly. Testování nulové hypotézy je založeno na 

zjišťování rozdílů průměru mezi více nezávislými výběry pomocí testovacího kritéria F.  

𝑯𝟎 𝑯𝟏 p-hodnota 𝑻(𝑿)  

𝝁𝟏 = 𝝁𝟐 = .. = 𝝁𝒌 

neplatí 

𝑯𝟎 
p = P (T ≥ 𝑥𝐹) = 1 – F0 (𝑥𝐹) 𝑭 =

𝒔𝟏
𝟐

𝒔𝒓
𝟐

~  𝑭(𝑘−𝟏;𝑛−𝒌)  (9.10) 
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V případě, že na zvolené hladině významnosti 𝛼 zamítneme nulovou hypotézu o shodě 

průměrů, činíme závěr, že alespoň jeden průměr se významně odlišuje od ostatních.  

To znamená, že alespoň dva výběrové soubory nepocházejí ze stejného základního souboru 

(populace). V takovém případě je potřeba provést podrobnější vyhodnocení výsledků a zjistit, 

mezi kterými výběry je statisticky významný rozdíl. K podrobnějšímu vyhodnocení výsledků 

slouží metody mnohonásobného porovnávaní. 

POZOR! Název metody „Analýza rozptylu“ může být zavádějící, neboť by mohl naznačovat,  

že se zaměřuje na srovnávání rozptylů mezi jednotlivými výběry. Hlavním cílem této metody  

je však srovnání středních hodnot (průměrů). Název vychází ze skutečnosti, že testová statistika 

vychází z porovnání rozptylu mezi skupinami a rozptylu uvnitř skupin. 

METODY MNOHONÁSOBNÝCH POROVNÁNÍ (POST HOC ANALÝZA) 

Tyto metody jsou založeny na testování vzájemných rozdílů mezi skupinovými průměry. 
Metody mnohonásobného porovnávání jsou statistické testy, kterými porovnáváme vzájemné 

rozdíly mezi skupinovými středními hodnotami a posuzujeme jejich statistickou významnost 

těchto rozdílů. Cílem metod je zjistit, mezi kterými konkrétními dvojicemi výběrů se průměry 

statisticky významně liší.  

Jejich princip vychází z testů shody dvou středních hodnot.  

𝑯𝟎: 𝝁𝟏∙ = 𝝁𝟐∙ 

proti oboustranné alternativě 

𝑯𝟏: 𝝁𝟏∙ ≠ 𝝁𝟐∙ 

Kde: 𝜇1∙, 𝜇2∙., . . , 𝜇𝑘∙     … neznámé řádkové populační průměry.  

Mezi nejčastěji používané metody patří: 

Tukeyho metoda (𝑻-metoda) 

𝑇-metoda se používá v případě, kdy pracujeme s vyváženým modelem, to znamená, že máme 

stejný počet pozorování v každém z výběrů. Je určena speciálně pro párová srovnávání všech 

kombinací průměrů.  

Tato metoda je konzervativní, tzn. že vyžaduje větší rozdíl mezi průměry, aby byl označen 

za statisticky významný. Má nižší pravděpodobnost chyby 1. druhu (tzn. zamítnutí nulovou 

hypotézu, ačkoli je platná). Tukeyho metody se snaží minimalizovat riziko falešně 
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pozitivního výsledku, což ji činí spolehlivou, ale na druhou stranu může přehlédnout menší, 

ale reálné rozdíly mezi průměry. 

Scheffeho metoda (𝑺-metoda) 

Scheffého metoda mnohonásobného porovnávání se také nazývá testem násobných kontrastů. 

Je nejvšestrannější a umožňuje testovat nejen párová srovnání, ale i složitější kombinace 

průměrů.  

𝑆-metoda je velmi přísná a vyžaduje velký rozdíl mezi průměry, aby ho označila  

za statisticky významný. Díky této přísnosti je účinná v ochraně proti chybě 1. druhu (falešně 

pozitivní závěr).  

Tukeyho metoda je spolehlivější pro párová srovnání, kdežto Scheffého metoda je 

bezpečnější a všestrannější pro komplexnější srovnání. V praxi se Tukeyho metoda používá 

častěji, protože většina analýz se zaměřuje právě na párové srovnání.  

 

Příklad 10.6 

Na trhu s výpočetní technikou se často spekuluje o vlivu jednotlivých komponent na 

celkovou cenu zařízení. Jako manažer produktu chcete na základě dat z 150 náhodně 

vybraných notebooků (datová matice „Notebook“) ověřit (na 5% hladině významnosti), zda 

existuje statisticky významný rozdíl v průměrné ceně notebooku v závislosti na typu 

displeje. U parametrických testů, a to včetně jednofaktorové analýzy rozptylu (ANOVA), 

nesmíme nikdy zapomenout na ověření předpokladů. Zejména je klíčové ověření normality 

dat v každé testované skupině. Bez splnění tohoto předpokladu by mohly být výsledky testu 

zkreslené a neplatné. 

Řešení 

Cílem je ověřit, zda existuje statisticky významný rozdíl v průměrné hodnotě kvantitativní 

proměnné (Cena) v závislosti na kategoriální proměnné (faktoru – Displeje) s několika 

úrovněmi (Matný, Lesklý, Antireflexní). 

K testování nulové hypotézy o populačních průměrech 𝐻0: 𝜇1 = 𝜇2 = 𝜇3  oproti 

oboustranné alternativě 𝐻1: neplatí 𝐻0, použijeme vícevýběrový test o hodnotě průměru – 

Analýzu rozptylu (ANOVA). 

Nejdříve se však musíme zaměřit na ověření předpokladů této metody, a to především na 

posouzení normality a následně na ověření shody rozptylů. 
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Pokračování příkladu 10.6 

Normalitu budeme testovat pomocí Shapiro-Wilkova testu. 

    SPSS 

Analyze → Descriptive Statistics → Explore → do okna Dependent List: 

proměnná Cena; do okna Factor List: proměnná Displej →  Plots → Normality 

plots with tests → Continue → OK 

 

 

 

Protože 𝑝-hodnoty (signifikance) Shapiro-Wilkova testu jsou ve všech třech skupinách 

(Matný, Lesklý, Antireflexní) větší než 0,05, nulovou hypotézu nemůžeme zamítnout,  

tzn. že data v každé z těchto skupin pocházejí z normálního rozložení.  

Shodu rozptylů 𝐻0 ∶ 𝜎1
2 = 𝜎2

2 = 𝜎3
2  budeme testovat na základě Levenova testu 

homogenity.  

SPSS 

Analyze → Compare Means and Proportions → One-Way ANOVA → do okna 

Dependent List vložíme proměnnou Cena, do okna Factor vložíme proměnnou 

Displej  →  Options označíme Homogeneity of variance test → Continue → OK 

 

 

 

Z Levenova test homogenity vyplynulo, že neexistuje statisticky významný rozdíl 

v rozptylech – rozptyly jsou homogenní. P-hodnota (𝑝 = 0,243) je vyšší než stanovená 

hladinu významnosti 0,05, a proto nezamítáme nulovou hypotézu.  

Dále pokračujeme interpretací výstupu analýzy rozptylů. 

 

Závěry z analýzy rozptylu (ANOVA) ukazují, že hodnota 𝐹-statistiky je 2,014 a 𝑝-hodnota 

(𝑝 = 0,137) je větší než zvolená hladina významnosti  = 0,05. To znamená, že neexistují 

statisticky významné rozdíly v průměrných cenách notebooků v závislosti na typu displeje.  

Zjištěné rozdíly v průměrných cenách jsou s největší pravděpodobností způsobeny náhodou. 
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10.4 Vztah mezi testováním hypotéz a intervalovými odhady 

parametrů 

Spolehlivost testu (1 − 𝛼), tedy pravděpodobnost, že nezamítneme nulovou hypotézu, pokud 

je skutečně platná, označuje zároveň pravděpodobnost, že parametr populace leží v příslušném 

intervalu spolehlivosti. Z toho plyne, že pokud testovaná hodnota parametru spadá do (1 − 𝛼) 

intervalu spolehlivosti, nemůžeme příslušnou nulovou hypotézu zamítnout na hladině 

významnosti 𝛼. Interval spolehlivosti tak lze chápat jako množinu všech možných hodnot 

testovaných parametrů pro, které na dané hladině významnosti nemůžeme nulovou hypotézu 

zamítnout. 

 

Příklad 10.7 

Představte si, že firma vyrábí balíčky cukrovinek a tvrdí, že průměrná hmotnost balíčku 

je 100 gramů. Na 5 % hladině významnosti ověřujeme, zda toto tvrzení platí. K dispozici 

máme náhodný vzorek 30 balíčků. Průměrná hmotnost balíčku je 102 gramů. 

Testujeme hypotézy 

𝐻0: 𝜇  =  𝜇0  → průměrná hmotnost balíčku je 100 gramů. 

𝐻1: 𝜇 ≠  𝜇0 → průměrná hmotnost balíčku se liší od 100 gramů. 

Místo přímého testování hypotézy můžete vypočítat 95% interval spolehlivosti  

pro průměrnou hmotnost. Předpokládejme, že výpočet intervalu spolehlivosti z náhodného 

výběru (s výběrovým průměrem 𝑥̅  = 102 gramů) je v intervalu: 

𝑃(98,5 g < 𝜇 < 105,5 g) = 0,95. 

Naše testovaná hodnota z nulové hypotézy (100 gramů) spadá do vypočteného intervalu 

spolehlivosti (98,5 g až 105,5 g). Hodnota 100 gramů se nachází uvnitř tohoto intervalu. 

Z tohoto důvodu nulovou hypotézu nezamítnete. 

Tento výsledek znamená, že na 5% hladině významnosti neexistuje dostatek důkazů pro 

tvrzení, že by se průměrná hmotnost balíčků lišila od 100 gramů. Jinými slovy, rozdíl mezi 

100 g (hypotéza) a 102 g (náš vzorek) není statisticky významný. Pokud by se interval 

spolehlivosti pohyboval například od 101 g do 106 g, hodnota 100 g by do něj nespadala  

a nulovou hypotézu bychom zamítli. 
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Shrnutí kapitoly 

Parametrické testy slouží k ověřování hypotéz o populačních parametrech, jako jsou průměry, 

rozptyly a podíly. Jedná se silné testy. 

Použití těchto testů je možné jen po důsledném ověření jejich předpokladů ještě před 

samotným testováním, jelikož porušení předpokladů může vést ke zkresleným a neplatným 

závěrům. 

Jednovýběrové testy slouží k porovnání jednoho výběru s hypotetickou hodnotou 

populace. Na základě jednoho výběrového souboru rozhodujeme, zda neznámý populační 

parametr odpovídá určité předpokládané číselné hodnotě (předpokladu, normě). 

Dvouvýběrové testy se používají k porovnání populačních parametrů dvou nezávislých 

nebo závislých výběrů.  

Nezávislé výběry – každý výběr obsahuje znaky měřené na jiných statistických jednotkách. 

Závislé výběry – jeden náhodný výběr obsahuje znaky opakovaně měřené na stejných 

statistických jednotkách → dvourozměrné rozdělení. 

Vícevýběrové testy slouží k porovnávání více než dvou výběrů najednou, což je klíčové 

pro zamezení zvyšování chyby 1. druhu, ke které by docházelo při opakovaných párových 

srovnáních.  
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10 Kontrolní otázky 

1. Co je hlavním předpokladem pro použití parametrických testů?  

2. Jaké kroky je třeba provést pro ověření předpokladu normality dat?  

3. Kdy se místo parametrických testů používají metody neparametrické?  

4. Jaký je účel jednovýběrových parametrických testů?  

5. Jaký test použijete pro ověření hypotézy o populačním rozptylu a jaké rozdělení se řídí 

jeho testová statistika?  

6. Kdy se používá jednovýběrový 𝑡-test a jak se liší od jednovýběrového 𝑈-testu?  

7. Co znamená 𝑝-hodnota a jakou roli hraje při rozhodování o zamítnutí nulové hypotézy?  

8. Jaký je rozdíl mezi testem o populačním podílu pro malý a velký rozsah výběrového 

souboru?  

9. Co je hlavním cílem dvouvýběrových parametrických testů?  

10. Kdy se používá Fisherův 𝐹-test a v čem se liší od Leveneova testu?  

11. Jaký je rozdíl mezi homoskedasticitou a heteroskedasticitou?  

12. Kdy se pro srovnání dvou nezávislých průměrů použije Aspin-Welchův test a proč?  

13. Vysvětlete rozdíl mezi nezávislými a závislými výběry a uveďte příklad testu pro závislé 

výběry.  

14. V jakém případě se pro testování hypotézy o shodě dvou nezávislých průměrů použije 

dvouvýběrový 𝑡-test?  

15. Jaký je hlavní rozdíl mezi vícevýběrovými a jednovýběrovými testy?  

16. K čemu slouží metody mnohonásobného porovnávání? 
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10 Příklady k procvičení 

Na základě datové matice „Byty“, kterou naleznete v kurzu v Moodle, odpovězte na následující 

otázky. 

10.1 Jednovýběrové testy 

10.1.1  Na základě náhodného výběru z datové matice „Byty“ ověřte, zda se průměrná cena za 

metr čtvereční statisticky významně liší od referenční hodnoty 15 000 Kč. Použijte 

hladinu významnosti 𝛼 = 0,05.                  [𝑡 = 1,471; 𝑝 = 0,144] 

 

10.1.2 Předpokládáte, že 65 % bytů v populaci má výtah. Ověřte na 5% hladině významnosti, 

zda podíl bytů s výtahem ve vašem výběrovém souboru statisticky významně odpovídá 

tomuto předpokladu.                [𝑍 = -0,942; 𝑝 = 0,346] 

 

10.2 Dvouvýběrové testy 

10.2.1  Testujte na hladině významnosti 𝛼=0,05, zda existuje statisticky významný rozdíl 

v průměrné ceně za metr čtvereční mezi byty, které jsou po rekonstrukci, a novostavbou. 

[𝐹 =  8,365 ; 𝑝 = 0,005; 𝑡 =  −16,947; 𝑝 < 0,001] 

 

10.2.2  Ověřte, zda se podíl bytů s výtahem statisticky významně liší mezi novostavbami a byty 

po rekonstrukci. Pro testování použijte hladinu významnosti 𝛼=0,05.  

[𝑍 =  0,108 ; 𝑝 = 0,914] 

10.3. Vícevýběrové testy 

10.3.1  Na 5 % hladině významnosti ověřte, zda existuje statisticky významný rozdíl 

v průměrné ceně bytu v závislosti na jeho stavu (novostavba, po rekonstrukci, původní).  

[𝑆𝑊𝑅 =  0,925 ; 𝑝 = 0,005; 𝑆𝑊𝑁 =  0,972 ; 𝑝 = 0,142; 𝑆𝑊𝑃 =  0,897 ; 𝑝 = 0,002] 

10.3.2  Zjistěte, zda má město, ve kterém se byt nachází, statisticky významný vliv na 

průměrnou cenu za metr čtvereční (𝛼=0,05). V případě statisticky významného rozdílu 

proveďte post-hoc analýzu. 

[𝑆𝑊𝑃 =  0,942 ; 𝑝 = 0,050; 𝑆𝑊𝐵 =  0,952 ; 𝑝 = 0,024; 𝑆𝑊𝑂 =  0,981 ; 𝑝 = 0,541] 

[𝐹𝐿𝑒𝑣𝑒𝑛𝑒 =  2,938 ; 𝑝 = 0,056; 𝐹 =  6,521 ; 𝑝 = 0,002; 𝜇𝑃 ≠  𝜇𝐵] 
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11 NEPARAMETRICKÉ TESTY 

Neparametrické testy jsou statistické metody, které se používají v případě, že nejsou splněny 

předpoklady pro použití parametrických testů. Tyto testy vycházejí z velmi obecných 

předpokladů a nezávisí na konkrétním tvaru rozdělení základního souboru.  

Výhodou těchto testů je jejich použitelnost bez ohledu na typ rozdělení a také skutečnost, 

že jsou méně citlivé na extrémní hodnoty.  

Nevýhodou neparametrických testů je jejich menší síla (nižší schopnost rozpoznat 

neplatnou nulovou hypotézu).  Tento nedostatek je však kompenzován širšími možnostmi 

použití neparametrických testů a vhodnou volbou testu jej lze téměř eliminovat. 

Neparametrické testy se používají především v těchto případech: 

▪ Data nemají normální rozdělení. 

▪ U malých výběrových souborů. 

▪ Při analýze dat s extrémními hodnotami. 

Neparametrické testy se týkají neparametrických hypotéz, které jsou zaměřeny na obecné 

vlastnosti populace (např. tvar rozdělení nebo závislost proměnných) bez nutnosti znát 

konkrétní parametry rozdělení. Často požadují pouze to, aby rozdělení náhodné veličiny bylo 

spojité. 

Neparametrické testy vycházejí z různých principů výpočtů 

Testy shody – testová statistika měří velikost rozdílu mezi pozorovanými a očekávanými 

četnostmi. Tyto testy jsou založeny na porovnávání pozorovaných četností s očekávanými 

četnostmi (četnosti, které by nastaly, kdyby platila např. nulová hypotéza o nezávislosti nebo 

rovnoměrném rozdělení). Patří sem 𝒄𝒉í-kvadrát test dobré shody, který se používá k ověření 

hypotézy, zda pozorované rozdělení četností odpovídá určitému teoretickému rozdělení. Dále 

pak 𝒄𝒉í-kvadrát test nezávislosti, který se používá k ověření toho, zda existuje závislost mezi 

dvěma kategorickými proměnnými. 

Testy odchylek – testová statistika je založena na odchylkách hodnot od určité předem dané 

hodnoty. Patří zde například znaménkový test, který se používá pro párová data. Pro každé 

párové pozorování se zaznamená, zda je rozdíl kladný, záporný, nebo nulový. Testová statistika 

je založená na sledování a posouzení četnosti (počtu) kladných a záporných odchylek 

(znamének) a nezohledňuje velikost rozdílu, pouze jejich směr. Dále pak Dixonův test 

extrémních odchylek, který je určený k identifikaci odlehlých hodnot v malých souborech dat. 
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Posuzuje, zda je extrémní hodnota v datovém souboru pouze náhodná nebo, zda je zatížena 

hrubou chybou. Používá se tam, kde je potřeba rychle posoudit validitu několika málo 

opakovaných měření. 

Permutačními testy – tyto metody jsou modernější a početně náročnější, ale nabízejí 

velkou flexibilitu a nevyžadují žádné předpoklady o rozdělení dat. Jsou založeny  

na opakovaném vzorkování neboli náhodném přeskupování naměřeného souboru dat.  Cílem  

je posoudit variabilitu možných výsledků při opakovaném přeskupování (permutaci) hodnot.  

Principem permutačního testování je srovnání pozorované testové statistiky s testovými 

statistikami, které by bylo možno teoreticky získat ze stejného datového souboru, kdyby 

přiřazení jednotlivých pozorovaných hodnot do sledovaných skupin bylo náhodné. Z takto 

vytvořeného empirického rozdělení testové statistiky se odhaduje 𝑝-hodnota. Velmi robustní 

testy, nevyžadují náhodný výběr. Nemusíme znát žádné předpoklady o rozdělení v populaci. 

Testy jsou založeny na randomizaci získaných hodnot patří zde například Fisherův exaktní 

test. 

Pořadové testy – jedná se o testy u kterých výpočet nevychází ze skutečných hodnot 

náhodné veličiny, ale s pořadových čísel (ordinální škály), které skutečné hodnoty nahrazují 

(nejmenší hodnota má pořadové číslo 1, největší pak n). Princip těchto testů tedy spočívá 

v nahrazení stávajících hodnot náhodné veličiny pořadovými čísly. Výhodou je, že převedeme-

li hodnoty na pořadová čísla, odstraníme tím vliv odlehlých hodnot. 

V dalším textu se budeme věnovat přehledu nejčastěji používaných neparametrických testů. 

Vzhledem k odlišným principům jejich výpočtu se zaměříme pouze na ty nejdůležitější  

a nejběžnější metody, aniž bychom uváděli kompletní výčet všech dostupných testů. 

11.1 Testy shody rozdělení 

Testy shody umožňují srovnání empirického (výběrového) rozdělení s jistým rozdělením 

teoretickým. Jejich význam spočívá zejména v tom, že umožňují potvrdit domněnku  

o rozdělení pravděpodobností náhodné veličiny, a tedy použít statistické metody, které jsou 

tímto rozdělením podmíněny.  

11.1.1 𝑪𝒉í-kvadrát test dobré shody 

𝑪𝒉í-kvadrát test dobré shody se používá k ověření hypotézy, že náhodný výběr pochází  

z rozdělení určitého typu, jehož parametry jsou dány (např. normální rozdělení). Častěji se však 
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používá k testování, zda výběr pochází z populace, kde jsou četnosti jednotlivých variant 

rozděleny podle kvantitativního či kvalitativního znaku do 𝑘 skupin (tříd), a podíly těchto 

variant v populaci jsou rovny hodnotám libovolného pravděpodobnostního rozdělení.  

Pro jednotlivé skupiny vypočteme teoretické (očekávané) četnosti 𝑛𝑜𝑗  odvozené 

za předpokladu platnosti nulové hypotézy. Na základě distribuční funkce normálního rozdělení   

a parametrů daného rozdělení stanovíme pravděpodobnost 𝑝𝑗, že hodnota náhodné veličiny  

𝑋 padne do 𝑗-tého intervalu. 

𝑯𝟎 𝑯𝟏 𝑻(𝑿) 

𝐹(𝑥) = 𝐹0(𝑥) 𝐹(𝑥) ≠ 𝐹0(𝑥) 
𝝌𝟐 = ∑

(𝒏𝒋 − 𝒏𝒐𝒋)

𝒏𝒐𝒋

𝒌

𝒋=𝟏

𝟐

~  𝜒𝛼(𝑘−𝑐−1)
2  

𝒏𝒐𝒋 = 𝒏 ⋅ 𝒑𝒋 

 

(11.1) 

 

(11.2) 

Kde: 𝐹(𝑥) … distribuční funkce, 

 𝐹0(𝑥) … hypotetická distribuční funkce, 

 𝑛 … celkový rozsah souboru, 

 𝑛𝑗  … empirické (skutečné, pozorované) četnosti, 

 𝑛𝑜𝑗 … teoretické (očekávané) četnosti, 

 𝑝𝑗 … pravděpodobnost, že hodnota veličiny 𝑋 bude v  𝑗-tém intervalu, 

 𝜒𝛼
2 … kritická hodnota 𝑐ℎí-kvadrát rozdělení pro (𝑘 − 𝑐 − 1) stupnů volnosti, kde 

𝑘 je počet tříd výběrového souboru a 𝑐 je počet parametrů, které neznáme, 

a které odhadujeme z výběrového souboru. 

Kritický obor je vymezen nerovností 𝜒2  > 𝜒𝛼(𝑘−𝑐−1)
2 . Z tohoto vztahu vyplývá zamítnutí 

nulové hypotézy 𝐻0 (náhodný výběr je z populace s daným rozdělením pravděpodobností)  

ve prospěch alternativní hypotézy 𝐻1, která říká, že náhodný výběr není z populace s daným 

rozdělením pravděpodobností. 

𝐶ℎí-kvadrát test dobré shody je vhodný pro diskrétní i spojitá rozdělení, ovšem  

za předpokladu, že jsou splněny určité podmínky. Pro jeho použití musí být celkový rozsah 

výběrového souboru větší než 50 jednotek a všechny teoretické četnosti musí být větší  

než 5. Pokud teoretické četnosti této podmínce nevyhovují, je možné dosáhnout jejího splnění 

sloučením několika sousedních tříd. Tímto krokem ovšem dojde také ke snížení počtu stupňů 

volnosti, protože počet tříd po sloučení je nižší. 
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Příklad 11.1 

Velkoobchodní distributor, který nakupuje notebooky, si vytvořil předpokládaný poměr pro 

nákup na základě trendů na trhu: 50 % černé, 30 % stříbrné, 10 % zlaté a 10 % bílé.  

Pro otestování, zda jeho nákupní strategie odpovídá skutečné poptávce, má k dispozici data 

ze vzorku 150 notebooků (datová matice „Notebook"), kde je zastoupení barev následující: 

82 černých, 49 stříbrných, 8 zlatých a 11 bílých. Naším úkolem je ověřit, zda je rozdíl mezi 

skutečným a předpokládaným rozdělením statisticky významný ( = 0,05). 

Řešení 

K testování hypotézy použijeme 𝒄𝒉í-kvadrát test dobré shody. Než k němu přistoupíme, 

musíme nejprve ověřit jeho předpoklady. Velikost souboru 𝑛 =150 předpoklad splňuje, ale 

pro náš test je důležité, aby v každé kategorii (barvě) byla teoretická četnost větší než 5. 

Výpočet teoretických četností vychází ze vztahu 11.2.  

Barva černá (50 %) → 150 ∙ 0,5 = 𝟕𝟓   → 𝑛 ⋅ 𝑝𝑗 =  𝑛𝑜𝑗 

Barva stříbrná (30 %) → 150 ∙ 0,3 = 𝟒𝟓    

Barva zlatá (10 %) → 150 ∙ 0,1 = 𝟏𝟓    

Barva bílá (10 %) → 150 ∙ 0,1 = 𝟏𝟓    

Všechny vypočítané teoretické četnosti jsou větší než 5. Předpoklad je tedy splněn 

a můžeme pokračovat v provedení 𝑐ℎí-kvadrát testu. 

Testujeme nulovou hypotézu 𝐻0: 𝐹(𝑥) = 𝐹0(𝑥), ž𝑒 skutečné rozložení barev odpovídá 

předpokládanému poměru, proti alternativní hypotéze 𝐻1: 𝐹(𝑥) ≠ 𝐹0(𝑥), že skutečné 

rozložení barev se od předpokládaného poměru statisticky významně liší. 

SPSS 

Analyze → Nonparametric Tests → Legacy Dialogs → Chi-square → do okna Test 

Variable List vložíme proměnnou Barva, v okně Expected Values označíme Values 

a vložíme zde očekávané pravděpodobnosti pro jednotlivé barvy (pozor ve stejném 

pořadí, jak jsou barvy zakódované) → OK 

            

            

            

            

  

        

 

 V žádném z políček tabulky není teoretická 

četnost není menší než 5 nejmenší je 15. 
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Pokračování příkladu 11.1  

Na základě výstupu 𝑐ℎí-kvadrát testu (𝜒2= 5,342) a vypočtené 𝑝-hodnoty (𝑝 = 0,148), která 

je vyšší než stanovená hladina významnosti 0,05, nezamítáme tedy nulovou hypotézu.  

To znamená, že neexistuje statisticky významný rozdíl mezi pozorovaným rozložením 

barev notebooků ve vzorku a ideálním poměrem, který si stanovil distributor. 

11.1.2 Kolmogorovův-Smirnovův test  

Kolmogorov-Smirnovův test shody se používá k ověření hypotézy, že náhodný výběr pochází 

z rozdělení se spojitou distribuční funkcí 𝐹(𝑥), která je plně specifikována, tzn. že známe její 

typ i příslušné parametry. Tento test používá k testování hypotézy o tvaru rozdělení zkoumané 

náhodné veličiny 𝑋 přímo jednotlivé naměřené hodnoty 𝑥1, 𝑥2, …, 𝑥𝑛 a tím nedochází ke ztrátě 

informace, obsažené ve výběru. V případech výběru malého rozsahu je síla Kolmogorov-

Smirnovova testu větší než síla 𝜒2 testu dobré shody.   

𝑯𝟎 𝑯𝟏 𝑻(𝑿) 

𝐹(𝑥) = 𝐹0(𝑥) 𝐹(𝑥) ≠ 𝐹0(𝑥) 𝐷𝑛 = max{|𝐹(𝑥𝑖) −
𝑖−1

𝑛
| , |𝐹(𝑥𝑖) −

𝑖

𝑛
|} ~  𝐷𝛼(𝑛) 

 

(11.3) 

 

Kde: 𝐹(𝑥) … distribuční funkce, 

 𝐹0(𝑥) … hypotetická distribuční funkce, 

 𝑛 … celkový rozsah souboru, 

 𝑥𝑖 … pozorované hodnoty pro 𝑖 =  1, 2, … , 𝑛, 

 𝐷𝑛(𝛼) … tabelovaná kritická hodnota pro Kolmogorov-Smirnovův test.  

Kritický obor je vymezen nerovností 𝐷𝑛 > 𝐷𝑛(𝛼). Jestliže hodnota testovacího kritéria 

𝐷𝑛 překročí tabelovanou kritickou hodnotu 𝐷𝑛(𝛼), zamítáme nulovou hypotézu o shodě mezi 

empirickým a teoretickým rozdělením na hladině významnosti 𝛼. 

Speciálně k ověření normality dat se dále používá Shapirův-Wilkův test, o kterém jsme již 

hovořili v rámci průzkumové analýzy dat.  

11.1.3 Shapiro-Wilkův test 

Shapirův-Wilkův test se používá pro testování nulové hypotézy, která tvrdí, že náhodný výběr 

𝑋 = 𝑥1, 𝑥2, …, 𝑥𝑛 pochází z normálního rozdělení s 𝑁(𝜇,𝜎2). Tento test je založen na zjištění, 
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zda se body sestrojeného kvantil-kvantilového grafu (𝑄-𝑄 plotu) významně liší od regresní 

přímky proložené těmito body.  

Shapirův-Wilkův test byl původně navržen pro malé soubory dat (𝑛 < 50), protože jeho 

výpočetní náročnost byla v době jeho vzniku (1965) limitujícím faktorem. Nicméně s rozvojem 

výpočetní techniky a statistického softwaru se jeho použití výrazně rozšířilo. V dnešní době  

je Shapirův-Wilkův test běžně používán pro soubory až do cca 2000 pozorování. Test je 

citlivější na odchylky od normality než Kolmogorovův-Smirnovův test.  

Z důvodu komplexnosti výpočtu testové statistiky je matematické pozadí testu poměrně složité, 

a proto se Shapirův-Wilkův test běžně nepočítá ručně, ale využívá se jeho implementace  

v softwarových nástrojích. 

    

Příklad 11.2 

V rámci studie trhu s notebooky je naším cílem zjistit, zda hmotnost notebooků pochází  

z normálního rozdělení. Tato informace je klíčová pro další analýzu dat, protože normalita 

je jedním z hlavních předpokladů pro použití mnoha statistických metod. 

Řešení 

K testování hypotézy použijeme Shapiro-Wilkův test, protože je pro soubory, jako je ten 

náš (s 150 jednotkami), považován za jeden z nejsilnějších a nejvhodnějších testů normality. 

Ve výstupu z programu bude také uveden výsledek Kolmogorova-Smirnovova testu, postup 

výpočtu je identický. 

Testujeme nulovou hypotézu 𝐻0: 𝐹(𝑥) = 𝑁(𝜇, 𝜎2), že hmotnost notebooků pochází  

z normálního rozdělení, proti alternativní hypotéze 𝐻1: 𝐹(𝑥) ≠ s 𝑁(𝜇, 𝜎2)., že hmotnost 

notebooků nepochází z normálního rozdělení. 

 

SPSS 

Analyze → Descriptive Statistics → Explore → proměnná Hmotnost do okna 

Variable(s) → Plots označíme Normality plots with tests → Continue → OK 

 

Z výstupu vyplývá, že 𝑝-hodnota (𝑝 = 0,017) Shapiro-Wilkova (𝑆-𝑊 = 0,978) testu  

je menší než zvolená hladina významnosti (0,05). Proto zamítáme nulovou hypotézu.  

To znamená, že data o hmotnosti notebooků nepocházejí z normálního rozdělení a pro další 

analýzu je nutné použít neparametrické testy. 
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11.2 Pořadové testy 

Pořadové testy se používají k ověření hypotéz o shodě mediánů v populaci, nebo přesněji,  

že data z obou výběrů pocházejí ze stejné populace. Využívají se především v případě, kdy data 

nesplňují předpoklady parametrických testů. Tyto testy pracují s pořadím hodnot neboli  

s ordinálními škálami. Ordinální data mohou být přímo výstupem měření, nebo mohou být  

na pořadí převedena kvantitativní, spojitá data. 

11.2.1 Mannův-Whitneyho test 

Mann-Whitney U test pro dva nezávislé výběry je neparametrickou obdobou 𝑡-testu pro dva 

nezávislé výběry.  

Předpokládejme, že dva základní soubory mají spojité rozdělení s distribučními funkcemi  

𝐹(𝑥) a 𝐹(𝑦). Z těchto souborů byly pořízeny dva nezávislé náhodné výběry o rozsazích 𝑚: 𝑥1, 

𝑥2, …, 𝑥𝑚 a 𝑛: 𝑦1, 𝑦2, …, 𝑦𝑛 , kde (𝑚𝑛). Je třeba ověřit hypotézu, že tyto nezávislé výběry 

mají stejnou polohu rozložení základního souboru proti alternativní hypotéze, že se oba svojí 

polohou významně liší. 

Oba výběry (𝑋, 𝑌) spojíme do jednoho souboru (sdružený výběr) a hodnoty uspořádáme 

podle ve vzestupném pořadí podle velikosti. Jednotlivým hodnotám tohoto souboru přiřadíme 

pořadová čísla 𝑅𝑥𝑚
, 𝑅𝑦𝑛

 (tzn. hodnoty očíslujeme od nejmenší k největší přirozenými čísly, 

přičemž stejně velkým hodnotám přiřadíme průměrné pořadí). Následně sečteme pořadová čísla 

prvního výběru 𝑅𝑥1
+ 𝑅𝑥2

+ . . . +𝑅𝑥𝑚
= 𝑇𝑥  a druhého výběru 𝑅𝑦1

+ 𝑅𝑦2
+. . . +𝑅𝑦𝑛

= 𝑇𝑦.  

𝑯𝟎 𝑯𝟏 𝑻(𝑿) 

𝐹(𝑥) = 𝐹(𝑦) 

 

𝜇𝑥 = 𝜇𝑦 

𝐹(𝑥) ≠ 𝐹(𝑦) 

 

𝜇𝑥 ≠ 𝜇𝑦 

𝑈𝑥 = 𝑚𝑛 +
𝑚(𝑚 + 1)

2
− 𝑇𝑥 (11.4) 

𝑈𝑦 = 𝑚𝑛 +
𝑛(𝑛 + 1)

2
− 𝑇𝑦 (11.5) 

𝑈 = min(𝑈𝑥, 𝑈𝑦) ~  𝑈𝛼(𝑚,𝑛) (11.6) 

Kde: 𝐹(𝑥), 𝐹(𝑦) … distribuční funkce náhodných výběrů 𝑋 𝑎 𝑌, 

 𝜇𝑥,  𝜇𝑦 … populační mediány náhodných výběrů 𝑋 𝑎 𝑌, 

 𝑈𝛼(𝑚,𝑛) … kritická hodnota rozdělení Mannův-Whitneyho testu. 

Pokud 𝑈 < 𝑈𝛼(𝑚,𝑛) → nulovou hypotézu na hladině významnosti 𝛼 zamítáme. 
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11.2.2 Dvouvýběrový Wilcoxonův test 

Dvouvýběrový Wilcoxonův test je také neparametrickou obdobou t-testu pro nezávislé soubory. 

Postup pro stanovení testovacího kritéria je obdobný jako u Mann-Whitneyho testu,  

ale je jednodušší, protože se jako testová statistika používá menší ze součtů pořadí.  

𝑯𝟎 𝑯𝟏 𝑻(𝑿) 

𝜇𝑥 = 𝜇𝑦 𝜇𝑥 ≠ 𝜇𝑦 𝑡 = min(𝑇𝑥, 𝑇𝑦) ~  𝑇𝛼(𝑚,𝑛) (11.7) 

Kde: 𝜇𝑥,  𝜇𝑦 … populační mediány náhodných výběrů 𝑋 𝑎 𝑌, 

 𝑇𝑥, 𝑇𝑦 … součty pořadových čísel pro náhodné výběry 𝑋 𝑎 𝑌, 

 𝑇𝛼(𝑚,𝑛) … kritická hodnota rozdělení pro dvouvýběrový Wilcoxonův test. 

Pokud 𝑇 < 𝑇𝛼(𝑚,𝑛) → nulovou hypotézu o shodě populačních mediánů na hladině 

významnosti 𝛼 zamítáme. 

 

Příklad 11.3 

Student si chce koupit nový notebook. Pro každodenní nošení do školy je pro něj klíčová 

nízká hmotnost, ale zároveň preferuje prémiový materiál, jako je hliník, namísto běžného 

plastu. Student si není jistý, zda notebooky s hliníkovým rámem nejsou významně těžší než 

notebooky s plastovým rámem. Na hladině významnosti 5 % ověřte, zda existuje statisticky 

významný rozdíl v hmotnosti mezi notebooky, které mají hliníkové rámy, a těmi, které mají 

plastové rámy. 

Řešení  

Na základě Shapiro-Wilkova testu bylo zjištěno, že proměnná hmotnost notebooků nemá 

normální rozdělení, a to jak pro notebooky s hliníkovým, tak i s plastovým rámem. Z tohoto 

důvodu nelze použít parametrické testy, které vyžadují normální rozdělení dat.  

Pro porovnání průměrné hmotnosti dvou nezávislých skupin (notebooky s hliníkovým  

a plastovým rámem) proto použijeme Mann-Whitneyho 𝑈 test.  

Testujeme nulovou hypotézu 𝐻0: 𝜇𝑥 = 𝜇𝑦, že mediány hmotnosti notebooků jsou v obou 

skupinách (hliníkový a plastový rám) stejné, proti alternativní hypotéze 𝐻1: 𝜇𝑥 ≠ 𝜇𝑦, 

že mediány hmotnosti notebooků se v obou skupinách statisticky významně liší. 
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Pokračování příkladu 11.3 

SPSS 

Analyze → Nonparametric Tests → Legacy Dialogs → Two-Independent-

Samples → do okna Test Variable List vložíme proměnnou Hmotnost, do okna 

Grouping Variable vložíme proměnnou Materiál → Define Groups → do okna 

Group 1 napíšeme 1 kód pro hodnotu plast do okna Group 2 napíšeme 2 kód  

pro hodnotu hliník →  Continue → OK 

 

 

 

 

 

Z výstupu analýzy je patrné, že hodnota U statistiky je 2226 a 𝑝-hodnota = 0,150. Protože 

je 𝑝-hodnota větší než zvolená hladina významnosti (0,05), nezamítáme nulovou hypotézu. 

To znamená, že neexistuje statisticky významný rozdíl v mediánech hmotnosti mezi 

notebooky, které mají hliníkový rám, a těmi, které mají rám plastový. 

11.2.3  Wilcoxonův test 

Wilcoxonův test, neboli Wilcoxonův test pro párová data, je neparametrický pořadový test, 

který se používá k porovnání mediánů dvou závislých (párových) souborů dat.  

Je to neparametrická alternativa k párovému 𝑡-testu a je vhodný v případech, kdy data nesplňují 

předpoklad normality nebo se jedná o ordinální data. 

Tento test ověřuje nulovou hypotézu 𝐻0, která předpokládá, že populační medián diferencí 

𝑑𝑖 je roven nule (medián rozdílů je nulový), proti alternativní hypotéze 𝐻1, která říká, že medián 

rozdílů je různý od nuly. 

Postup testování spočívá v tom, že pro každou dvojici 𝑛 závislých pozorování 𝑥𝑖, 𝑦𝑖, 

vypočteme diferenci 𝑑𝑖 (𝑑𝑖  =  𝑥𝑖  −  𝑦𝑖) pro 𝑖 =  1, 2, …  𝑛. Nenulovým diferencím v absolutní 

hodnotě přiřadíme vzestupně pořadová čísla, které následně rozdělíme do dvou skupin podle 

znaménka diferencí 𝑑𝑖 (shodným diferencím dáváme průměrné pořadí). Následně sečteme 

pořadová čísla pro skupinu záporných diferencí 𝑊−a pro skupinu kladných diferencí 𝑊+. 

𝑯𝟎 𝑯𝟏 𝑻(𝑿) 

𝜇𝑑 = 0 𝜇𝑑 ≠ 0 𝑊 = min  (𝑊−, 𝑊+) ~  𝑊𝛼(𝑛) (11.8) 
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Kde: 𝜇𝑑 … populační medián diferencí, 

 𝑊𝛼(𝑛) … kritická hodnota rozdělení Wilcoxonův párový test pro 𝑛 ... počet 

nenulových diferencí. 

Jestliže W < 𝑊𝛼,(𝑛)) → zamítáme nulovou hypotézu na hladině významností 𝛼.        

 

Příklad 11.4 

Majitel obchodu s elektronikou chce zjistit, jak se liší jeho prodejní ceny hliníkových 

notebooků od doporučených cen výrobcem. Na hladině významnosti 5 % (α = 0,05) zjistěte, 

zda existuje statisticky významný rozdíl mezi prodejní cenou a doporučenou cenou  

u notebooků s hliníkovým rámem. 

Řešení  

Na základě Shapiro-Wilkova testu bylo zjištěno, že proměnné cena a doporučená cena  

u notebooků s hliníkovým rámem nemají normální rozdělení. Pro testování tedy použijeme 

neparametrický test, který je vhodný pro párová data, která nesplňují předpoklad normality. 

Tímto testem je Wilcoxonův test pro párová data. 

Testujeme nulovou hypotézu 𝜇𝑑 = 0, zda je medián rozdílů nulový. Neexistuje statisticky 

významný rozdíl mezi prodejní a doporučenou cenou u notebooků s hliníkovým rámem.  

 

SPSS 

Analyze → Nonparametric Tests → Legacy Dialogs → Two-Related-Samples → 

do okna Test Pairs: vložíme do Variable1 proměnnou Cena, do okna Variable2 

proměnnou Doporučená_cena → OK 

 

 

    

Protože je 𝑝-hodnota (𝑝 < 0,001) menší než zvolená hladina významnosti 0,05, zamítáme 

nulovou hypotézu. Existuje statisticky významný rozdíl v mediánech cen mezi prodejní 

cenou a doporučenou cenou u sledovaných hliníkových notebooků. Ceny, za které  

se hliníkové notebooky prodávají, se významně liší od cen doporučených výrobcem. 
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11.2.4 Kruskal-Wallisův test 

Kruskal-Wallisův test je neparametrická obdoba jednofaktorové analýzy rozptylu (ANOVY).  

Používá se především tehdy, jsou-li výrazně narušeny základní předpoklady pro provedení 

ANOVY (normalita dat a homogenita rozptylu) a také tehdy, mají-li jednotlivé výběry velmi 

málo pozorování (nebo jsou jejich počty silně nevyvážené) a normalitu není možné spolehlivě 

stanovit. 

Kruskal-Wallisův test slouží k ověření nulové hypotézy, že 𝑘 > 2 nezávislých náhodných 

výběrů o rozsazích 𝑛 =  𝑛1, 𝑛2, .., 𝑛𝑘 pochází z jednoho základního souboru (ze stejného 

rozdělení). Předpokládáme, že tyto náhodné výběry byly pořízeny ze základních souborů  

se spojitými distribučními funkcemi. 

Pro testování Kruskal-Wallisova testu se všechny výběrové soubory nejprve sloučí  

do jednoho souboru. Následně se každé hodnotě přiřadí vzestupně pořadové číslo. Pokud  

se vyskytnou stejné hodnoty, přiřadí se jim průměrné pořadí. Poté se součty pořadových čísel 

sečtou zvlášť pro každý výběrový soubor. Tyto součty se označují jako 𝑇1,𝑇2,…,𝑇𝑘, kde  

𝑇𝑖 je součet pořadových hodnot pro 𝑖-tý výběr. 

𝑯𝟎 𝑯𝟏 𝑻(𝑿) 

𝐹1(𝑥) = 𝐹2(𝑥) = .. = 𝐹𝑘(𝑥) 

𝜇1 = 𝜇2 = ⋯ =   𝜇𝑘 

Neplatí 

𝐻0 
𝐾𝑊 =

12

𝑛(𝑛+1)
∑

𝑇𝑖
2

𝑛𝑖

𝑘
𝑖=1 − 3(𝑛 + 1) ~  𝜒𝛼,𝑘−1

2  (11.9) 

Kde: 𝐹1(𝑥), 𝐹2(𝑥), . .,  𝐹𝑘(𝑥) … distribuční funkce náhodných výběru 𝑖 = 1, 2, . . , 𝑘, 

 𝜇1, 𝜇2, … , 𝜇𝑘 … populační mediány náhodných výběrů 𝑖 = 1, 2, . . , 𝑘, 

 𝑛 …  celkový rozsah souboru = ∑ 𝑛𝑖
𝑘
𝑖=1  

  𝜒𝛼,𝑘−1
2  … kritická hodnota 𝑐ℎí-kvadrát rozdělení pro 𝑘-1 

nezávislých výběrů. 

Jestliže 𝐾𝑊   𝜒𝛼,𝑘−1 
2 → zamítáme nulovou hypotézu, hodnoty nejméně dvou 

pozorovaných výběrových souborů se od sebe výrazně liší (nepocházejí ze stejného rozdělení). 

Pro zjištění podrobnějších výsledků neboli pro mnohonásobné srovnání (tzv. post-hoc 

testy) jednotlivých dvojic skupin, můžeme v kombinaci s Kruskal-Wallisovým testem použít 

Neményiho metodu a Dunnovu metodu. 

Neményiho metoda srovnávání nezávislých výběrů, je konstruována pro vyvážené modely 

(platí 𝑛1  =  𝑛2  = ⋯ =  𝑛𝑘  =  𝑁). Postup při této metodě spočívá v porovnávání všech 
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párových diferencí |𝑇𝑖 − 𝑇𝑗|s kritickou hodnotou 𝑁𝛼(𝑘,𝑁).  Jestliže |𝑇𝑖 − 𝑇𝑗| ≥ 𝑁𝛼(𝑘,𝑁), zamítá 

se hypotéza, že 𝑖-tý a 𝑗-tý výběr pocházejí z téhož rozdělení. Kritické hodnoty jsou tabelovány 

pro 𝑁 25 a 𝑘10, kde 𝑘 je počet porovnávaných tříd, 𝑁 celkový počet opakování v každé 

třídě.  

Dunnova metoda se používá v případě, že rozsahy jednotlivých výběrových souborů 

nejsou stejné (nevyvážený model). Jestliže  |𝑇𝑖 − 𝑇𝑗| > 𝑢 2𝛼

𝑘(𝑘−1)

√
𝑁(𝑁+1)

12
(

1

𝑛𝑖
+

1

𝑛𝑗
), kde: 𝑢 2𝛼

𝑘(𝑘−1)

 je 

tabelovaná kritická hodnota rozdělení 𝑁(0, 1), zamítáme na hladině významnosti 𝛼 hypotézu, 

že 𝑖-tý a 𝑗-tý výběr pocházejí z téhož rozdělení.   

Příklad 11.5 

Představte si, že v rámci seminární práce provádíme analýzu dat z trhu s notebooky. Máte 

za úkol zjistit, zda existuje statisticky významný rozdíl v průměrné výdrži baterie  

u notebooků, které jsou vybaveny různým typem grafické karty.  

Řešení  

Proměnná baterie nemá ani pro jedu kategorii grafické karty normální rozdělení, musíte pro 

použít Kruskal-Wallisův test, který je vhodný pro porovnání tří a více nezávislých skupin.  

 

 

 

Testujeme nulovou hypotézu 𝐻0: 𝐹1(𝑥) = 𝐹2(𝑥) = 𝐹3(𝑥), že všechny nezávislé výběry 

pocházejí z populace ze stejným rozdělení, proti alternativní hypotéze 𝐻1: 𝐻̅0, že se alespoň 

jeden výběr v rozdělení mediánu statisticky významně liší od ostatních výběrů. 

SPSS 

Analyze → Nonparametric Tests → Independent-Samples → záložka Fieds  

do okna Test Fields vložíme proměnnou Baterie, do okna Groups vložíme 

proměnnou Grafika → záložka Settings označíme Customize tests  

a zaškrtneme Kruskal-Wallis → Run 
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Pokračování příkladu 11.5 

Z výstupu Kruskl-Wallisova testu vyplývá, že 𝑝-hodnota (𝑝 < 0,001) je menší než hladina 

významnosti (𝛼 = 0,05), proto zamítáme nulovou hypotézu. To znamená, že existuje 

statisticky významný rozdíl v mediánech výdrže baterie mezi alespoň dvěma skupinami 

typů grafických karet.  Pro zjištění, mezi kterými konkrétními skupinami rozdíl existuje,  

je nutné provést podrobnější hodnocení výsledků pomocí metod párového srovnávání.  

V případě, že je počet pozorování v každé skupině jiný, hovoříme o nevyváženém modelu. 

Pro správné porovnání v takovýchto situacích je nutné použít korigovanou p-hodnotu (Adj. 

Sig.). Tato korekce je nezbytná proto, že při vícenásobném srovnávání se zvyšuje 

pravděpodobnost, že náhodně získáme statisticky významný výsledek.  

Dedikovaná – Integrovaná grafika: 𝒑 = 0,307 je větší než hladina významnosti 0,05. 

Nezamítáme nulovou hypotézu. To znamená, že mezi notebooky s dedikovanou  

a integrovanou grafikou neexistuje statisticky významný rozdíl v mediánu výdrže baterie. 

Dedikovaná – Herní grafika: 𝒑 < 0,0001. Tato hodnota je menší než hladina významnosti 

0,05. Zamítáme nulovou hypotézu. Existuje statisticky významný rozdíl v mediánu výdrže 

baterie. 

Integrovaná – Herní grafika:  < 0,0001. Tato hodnota je také menší než 0,05. Zamítáme 

nulovou hypotézu. Existuje statisticky významný rozdíl v mediánu výdrže baterie. 

Na základě Kruskal-Wallisova testu a následných post-hoc testů jsme zjistili, že medián 

výdrže baterie se statisticky významně liší mezi herní grafickou kartou a ostatními dvěma 

typy (dedikovanou a integrovanou).   
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Shrnutí kapitoly 

Neparametrické testy jsou statistické metody, které se používají v situacích, kdy nejsou splněny 

předpoklady pro použití parametrických testů. Mezi jejich hlavní výhody patří, že jsou 

použitelné bez ohledu na typ rozdělení a jsou méně citlivé na extrémní hodnoty. Nevýhodou 

je jejich menší síla, tedy nižší schopnost rozpoznat neplatnou nulovou hypotézu. 

Testy shody rozdělení srovnávají empirické rozdělení s určitým teoretickým rozdělením. 

Vycházejí z porovnávání pozorovaných četností s očekávanými četnostmi. 

▪ 𝑪𝒉í-kvadrát test dobré shody 

▪ Kolmogorovův-Smirnovův test 

▪ Shapirův-Wilkův test  

Testy odchylek slouží k posouzení, zda se naměřené hodnoty významně liší od určité 

předem dané hodnoty. 

Pořadové testy vycházejí z toho, že původní hodnoty dat jsou nahrazeny pořadovými čísly. 

Hlavní výhodou tohoto postupu je, že se odstraní vliv odlehlých hodnot. 

▪ Mannův-Whitneyho 𝑼 test 

▪ Wilcoxonův test pro párová data 

▪ Kruskal-Wallisův test  

Permutační testy se používají k posouzení variability možných výsledků náhodným 

přeskupováním (permutací) naměřených dat. 
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11 Kontrolní otázky 

1. Vysvětlete rozdíl mezi parametrickými a neparametrickými testy.  

2. V jakých situacích je vhodné použít neparametrické testy? 

3. Jaké jsou hlavní výhody neparametrických testů a jaké jsou jejich nevýhody?  

4. K čemu slouží testy shody rozdělení? 

5. Co jsou to očekávané četnosti?  

6. Jaké jsou hlavní předpoklady 𝑐ℎí-kvadrát testu dobré shody rozdělení? 

7. Jaký neparametrický test slouží k ověření, zda dva nezávislé výběry pocházejí ze stejné 

populace?  

8. Kdy se používá Kruskal-Wallisův test?  

9. V jakých případech je vhodné použít Wilcoxonův test pro párová data a jaká je jeho 

parametrická obdoba?  

10. Jaký je princip výpočtu pořadových testů? Co se stane s původními hodnotami dat?  

11. Co je 𝑝-hodnota (signifikantní hodnota) a jaký je její vztah k hladině významnosti?  
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11 Příklady k procvičení 

Na základě datové matice „Byty“, kterou naleznete v kurzu v Moodle, odpovězte na následující 

otázky. 

11.1.1 Realitní makléř chcete zjistit, zda je rozložení bytů podle dispozice na trhu rovnoměrné.  

Na základě informací z výběrového souboru ověřte, zda rozložení bytů podle jejich 

dispozice odpovídá tomuto předpokladu. Pro testování hypotéz použijte hladinu 

spolehlivosti 95 %. 

[𝜒2 =  8,320 ; 𝑝 = 0,016] 

11.1.2 Pomocí vhodného testu ověřte, zda proměnná plocha bytu pochází z normálního 

rozdělení. 

[𝑆-𝑊 =  0,898 ; 𝑝 < 0,001] 

11.1.3 Na základě informací z datového souboru o bytech a ověřte, zda existuje statisticky 

významný rozdíl v ploše bytu mezi domy, které jsou vybaveny výtahem, a těmi, které 

ho nemají. Pro testování hypotéz použijte hladinu významnosti 𝛼=0,05. 

[𝑀-𝑊 = 821,00; 𝑝 < 0,001] 

11.1.4 Na hladině významnosti 5 % ověřte, zda existuje statisticky významný rozdíl v ploše 

bytu v závislosti na jeho stavu (např. novostavba, po rekonstrukci, původní stav) 

[𝐾-𝑊 = 129,180; 𝑝 < 0,001] 
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