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A B S T R A C T   

A set of 917 wines of Czech origin were analysed using nuclear magnetic resonance spectroscopy (NMR) with the 
aim of building and evaluating multivariate statistical models and machine learning methods for the classifi-
cation of 6 types based on colour and residual sugar content, 13 wine grape varieties and 4 locations based on 1H 
NMR spectra. The predictive models afforded greater than 93% correctness for classifying dry and medium dry, 
medium, and sweet white wines and dry red wines. The trained Random Forest (RF) model classified Pinot noir 
with 96% correctness, Blaufränkisch 96%, Riesling 92%, Cabernet Sauvignon 77%, Chardonnay 76%, 
Gewürtztraminer 60%, Hibernal 60%, Grüner Veltliner 52%, Pinot gris 48%, Sauvignon Blanc 45%, and Pálava 
40%. Pinot blanc and Chardonnay, varieties that are often mistakenly interchanged, were discriminated with 
71% correctness. The findings support chemometrics as a tool for predicting important features in wine, par-
ticularly for quality assessment and fraud detection. 
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Formate (Compound CID: 283) 
Histidin (Compound CID: 6274) 
Trigonellin (Compound CID: 5570)   

1. Introduction 

The Czech Republic is becoming an important European wine pro-
ducer (Borák & Vacek, 2018). Marketed Czech wines primarily com-
prise varietal wines in which at least 85% of the grapes used for pro-
duction represent a specific wine grape variety that must be defined on 
the label. European regulations specify labelling rules to inform cus-
tomers and guarantee producers recognition of the quality of their 
products. In addition to the compulsory labelling particulars (EU No 
2019/33), Protected Designation of Origin (PDO) wines of the Czech 
Republic must state additional particulars on the label, including the 
vintage year, the names of one or more wine grape varieties, the re-
sidual sugar content, and the community symbol, which indicates the 
PDO and geographical unit. The label data are verified by the Czech 
Food Inspection Authority in the process of classification that precedes 
the introduction to the market of PDO wines (International 
Organisation of Vine and Wine, 2013, 2015; Národní vinařské centrum, 
2020; EU No 2019/33). 

Wine is a complex system, and its chemical profile is the result of 
the environment, climate, wine grape variety, metabolism of yeast 
during fermentation, and various human interventions (such as tem-
perature, barrel and/or bottle ageing, and addition of acids, enzymes 
and fining agents). High standards require analytical tools that are 
capable of assessing residual sugar content, wine grape variety, wine 
colour, origin, and the addition of sugar, sweeteners or flavourings. 
Nuclear magnetic resonance (NMR) and mass spectroscopy are the core 
methods of metabolomics (Hong, 2011; Johanningsmeier, Harris, & 
Klevorn, 2016), which is the study of global metabolite profiles in a 
system under a set of conditions (Rochfort, Ezernieks, Bastian, & 
Downey, 2010). When applied to the onventional methods allowing the 
high-clasfood production/consumption chain, metabolomics is called 
foodomics (Trimigno, Marincola, Dellarosa, Picone, & Laghi, 2015). 
NMR, a versatile high-resolution technique that requires minimal 
sample pre-treatment, is particularly suitable for wine analysis due to 
its broad metabolite coverage, high throughput and reproducibility. 
Recent applications of 1H NMR to wine metabolite analysis have in-
cluded investigations of differences between wine grape varieties, 
geographic origins and vintages (Ali, Maltese, Toepfer, Choi, & 
Verpoorte, 2011; Brescia, Košir, Caldarola, Kidrič, & Sacco, 2003; Du, 
Bai, Zhang, & Liu, 2007; Godelmann et al., 2013; Gougeon, da Costa, 
Guyon, & Richard, 2019; Larsen, Berg, & Engelsen, 2006; Mazzei, 
Francesca, Moschetti, & Piccolo, 2010; Papotti et al., 2013; Rochfort, 
Ezernieks, Bastian, & Downey, 2010; Son et al., 2008; Viggiani & 
Morelli, 2008), oenological practices (Amargianitaki & Spyros, 2017) or 
winemaking techniques (Mazzei, Spaccini, Francesca, Moschetti, & 
Piccolo, 2013). In addition, 1H NMR is used for quality screening by 
control agencies (Minoja & Napoli, 2014). 

To unravel the rich and complex compositional information present 
in NMR datasets, multivariate statistical analysis is used. The most 
widely used chemometrics methods for data mining with discrimination 
power are principal component analysis (PCA) and partial least squares- 
discriminant analysis (PLS-DA). Alternative data treatment methods, 
such as random forest (RF) (Breiman, 2001), show great potential and 
advantages compared to these conventional methods allowing high- 
classification performances, including minimising the risk of over-fit-
ting and class imbalance problems and eliminating irrelevant features. 
A shortcoming of these alternative methods is that the interpretation of 
the results is complex since the classification is not displayed as a 
graphical tree (Jiménez-Carvelo, González-Casado, Bagur-González, & 
Cuadros-Rodríguez, 2019; Menze et al., 2009); consequently, their 

application in food quality and authenticity remains scarce never-
theless, it has shown to be a state-of-the art method (Scott et al., 2013). 
RF has been previously applied in wine metabolomics based on gas 
chromatography-mass spectrometry with the aim of evaluating the 
discriminatory power of different compound classes for classification of 
four wine grape varieties (Gómez-Meire, Campos, Falqué, Díaz, & Fdez- 
Riverola, 2014). The RF algorithm is an unbiased supervised classifi-
cation method based on a collection of decision trees formed using 
bootstrap samples from the learning dataset. The final classification is 
determined by computing the frequencies of predictions for each group 
over the whole forest (Breiman, 2001). The variables contributing the 
most to the separation could be evaluated by two different measures: 
“mean decrease accuracy” derived from statistical permutation tests, or 
“Gini importance” from the training of the random forest classifier 
(Breiman, 2001; Menze et al., 2009). 

In the present study, Czech wines with a PDO designation were 
investigated by an untargeted NMR spectroscopy approach coupled 
with multivariate statistical analysis. We evaluated the ability of NMR 
coupled with chemometrics to discriminate Czech wines according to 
(i) wine colour and residual sugar content (type), (ii) wine grape variety 
and (iii) geographic origin. In summary, we propose an innovative 
approach based on NMR spectrometry, combined with the RF algo-
rithm, to provide an accurate prediction model for untargeted si-
multaneous discrimination of 13 wine grape varieties. Table 1 

2. Material and methods 

2.1. Wine samples 

A set of 917 bottles of Czech wines were provided by The National 
Wine Centre's Wine Salon of the Czech Republic, an independent na-
tional wine competition, in 2019. The wines were from five sub-regions 
of Bohemia and Moravia (Supplement Material Figure S1): Mikulovská 
(250 samples), Slovácká (153 samples), Velkopavlovická (143 sam-
ples), Znojemská (111 samples) and Mělnická (8 samples); for two 
wines, the area was unclassified. The wines belonged to six types based 
on wine colour and residual sugar content (Supplementary Material  
Table S1): 494 wines were categorised as dry and medium dry white 
wines, 137 as medium white wines, 36 as sweet white wines, 44 as rosés 
and blancs de noir, 188 as dry red wines and 4 as other red wines. The 
wines were made from wine grape varieties including Riesling (88 
samples), Chardonnay (70 samples), Pinot gris (70 samples), Sauvignon 
Blanc (63 samples), Welschriesling (62 samples), Pinot noir (58 sam-
ples), Grüner Veltliner (51 samples), Gewürtztraminer (50 samples), 
Pinot blanc (47 samples), Blaufränkisch (37 samples), Pálava (36 
samples), Cabernet Sauvignon (24 samples), Hibernal (24 samples), 
Zweigeltrebe (20 samples), Grüner Silvaner (19 samples), Saint Laurent 
(19 samples), Neuburger (14 samples), Merlot (13 samples), Muskat 
Moravsky (13 samples), Andre (12 samples), Müller-Thurgau (12 
samples), Cabernet Moravia (11 samples), Blauer Portugieser (9 sam-
ples), Dornfelder (7 samples), Kerner (6 samples), Aurelius (5 samples) 
and Alibernet (3 samples); 16 samples were classified as other, and 45 
samples were cuvée. The year of harvest ranged between 2007 and 
2017. The sugars and the actual alcoholic strength of the wines were 
previously assessed by analytical methods approved by The Interna-
tional Organisation of Vine and Wine (OIV) and declared on the certi-
ficate of analysis, which is required for introduction to the market 
(International Organisation of Vine and Wine, 2019). 
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2.2. Sample preparation 

All chemical reagents used for sample preparation for analysis were 
of analytical grade. NaN3 (≥99.5%), H3PO4 (99%), 2,2-Dimethyl-2-si-
lapentane-5-sulfonate sodium salt (97%, DSS), KH2PO4 (99%), D2O 
(99.9%, D2O) and HCl (36.5–38.0) were purchased from VWR (Radnor, 
PA, USA). 

Phosphate buffer solution was prepared in D2O by adding 1.5 M 
KH2PO4, 0.2% NaN3 and 5 mM DSS. The pH was adjusted to 4 with 
H3PO4 and measured by an inoLab® pH 7110 pH meter (WTW, 
Germany). DSS was used as the internal standard to calibrate the che-
mical shift to 0 ppm. To each 540 µl of sample, 60 µl of phosphate 
buffer solution was added and mixed using an IKA® MS 3 basic vortex 
oscillator. The total 600-µl volume of prepared sample was transferred 
to a 5-mm NMR tube (NORELL Inc., Morganton, NC, USA) and subse-
quently analysed. 

2.3. NMR data acquisition 

All spectra were recorded on a Bruker Avance III spectrometer 
equipped with a broad band fluorine observation (BBFO) SmartProbeTM 

with z-axis gradients (Bruker BioSpin GmbH, Rheinstetten, Germany) 
operating at a proton NMR frequency of 500.23 MHz. The temperature 
was set to 298 K (25 °C). 1H NMR spectra were acquired and processed 
under the same conditions. The Bruker pulse sequence (noesypr1d) was 
applied to suppress the residual water signal at 4.704 ppm. For each 
sample, 128 scans and 4 dummy scans were collected as 64 K data 
points using a spectral width of 8 K Hz, receiver gain of approx. 18, 
relaxation delay of 1 s, acquisition time of 4.00 s, and mixing time of 
0.1 s. The total acquisition time was 11 min. Tuning, lock, gain, 90° 
pulse calibration, and shimming were calibrated automatically for each 
sample by the standard module routine developed by Bruker (atma, 
lock, rga, pulsecal and topshim). The free induction decay (FID) was 
multiplied by 0.3 Hz line broadening prior to Fourier transformation. 
The raw NMR files are accessible from MetaboLights (study identifier: 
MTBLS1677, www.ebi.ac.uk/metabolights/MTBLS1677) (Haug et al., 
2020). 

2.4. Metabolite profiling 

1H NMR spectra of pooled wines were phased and baseline cor-
rected using Chenomx NMR suite 8.5 software, professional edition 
(Chenomx Inc., Edmonton, AB, Canada). Signal assignment was per-
formed using internal and in-house databases. The assignments of the 
metabolites were confirmed by 13C NMR, J-resolved, 1H–1H COSY, 
long-range COSY and 1H−13C HSQC (for settings, see Supplementary 
Material Table S2). 

2.5. NMR data reduction and pre-processing 

1H NMR spectra were subjected to phase and baseline correction 
using the Whitakker smoother algorithm in MestReNova software ver-
sion 14.1.0 (Mestrelab Reserach S.L., Santiago de Compostela, Spain). 
The spectra were calibrated to the internal standard DSS at 0.0 ppm and 
aligned by global alignment based on a reference spectrum. Specific 
scripts were implemented for data reduction. The 1H NMR spectral data 
were reduced into 0.04-ppm spectral bins using the sum of the data-
points, and the region corresponding to water (4.74–4.98) was ex-
cluded. The binning width of 0.04 ppm represents a compromise be-
tween preserving sufficient data resolution and minimizing the loss of 
spectral information and the effect of peak drift. To avoid false 
grouping of samples in chemometrics models caused by the pH and 
paramagnetic properties of the wines, the bins from areas with large 
drift (1.02–1.34, 1.34–1.42, 2.02–2.10, 2.62–2.74, 3.58–3.66, 
4.38–4.54, 8.22–8.42) were summed. A total of 226 bins were used for 
analysis. The spectra were then normalized to the average intensity of 
the internal standard and the total spectral area. The data were log- 
transformed, mean-centred and divided by the standard deviation of 
each variable (auto-scaled) obtained using the package ‘MetaboAnalyst’ 
version 2.0 (Chong, Yamamoto, & Xia, 2019) in R 3.5.0. The bins were 
used as variables for subsequent statistical analysis and modelling. 

2.6. Exploratory data analysis and statistical modelling 

The PCA was designed to reduce the dimensionality of the original 
data, identify sample composition trends, and exclude strong outliers. 
The heatmap was developed by applying hierarchical clustering (HC) 
analysis of the group averages and the features ranked using ANOVA. In 
this technique, the similarity among group averages was measured 
using the Pearson distance, while cluster aggregation was based on the 
average linkage method. Normalized bins were used for exploratory 
data analysis using the package ‘MetaboAnalyst’ version 2.0 (Chong 
et al., 2019) in R 3.5.0. The random forest (RF) algorithm was used for 

Table 1 
1H NMR chemical shifts and coupling constants (Hz) of wine compounds 
identified by references and using 1D and 2D NMR spectra (j-res, DQF-COSY, 
long-range COSY, HMBC).     

Peak Compound δH
b  

1 Isobutanol 0.88 (d) 30.5 (m) 3.35 (d) 
2 Isopentanol 0.88 (d), 1.43 (q), 1.65 (m), 3.63 (t) 
3 Isoleucine 0.93 (t), 1.00 (d), 1.25 (m), 1.46 (m), 1.97 

(m), 3.67 (d) 
4 Leucine 0.95 (d), 1.70 (m), 3.74 (m) 
5 2,3-Butanediol 1.13 (d), 3.71 (m) 
6 Ethanol 1.17 (t), 3.65 (q) 
7 Ethyl acetate 1.24 (t), 2.07 (s), 4.13 (q) 
8 Lactate 1.40 (d), 4.16 (q) 
9 Alanine 1.49 (d), 3.79 (q) 
10 Proline 2.02 (m), 2.34 (m), 3.34 (m), 3.41 (m), 4.12 

(dd) 
11 Acetate 2.05 (s) 
12 Methionine 2.10 (m), 2.64 (t), 3.86 (dd) 
13 Acetoin 1.36 (d), 2.21 (s), 4.42 (q) 
14 Acetoacetate 2.26 (s), 3.48 (s) 
15 Pyruvate 2.36 (s) 
16 Glutamate 2.14 (m), 2.49 (m), 3.79 (dd) 
17 Succinate 2.65 (s) 
18 Choline 3.19 (s), 3.51 (m), 4.06 (m) 
19 Myo-Inositol* 3.27 (t), 3.53 (dd), 3.61 (t), 4.04 (t) 
20 Methanol 3.35 (s) 
21 Glycerol 3.55 (m), 3.65 (m), 3.76 (tt) 
22 Fructose 3.55 (m), 3.69 (m), 3.80 (m), 3.88 (dd), 

3.98 (m), 4.01 (d), 4.09 (d) 
23 Tartrate 4.38 (s) 
24 α-Glucose 5.21 (d) 
25 β-Glucose 4.62 (d) 
26 Turanose 5.30 (d), 5.20 (d) 
27 Uridine 5.88 (d), 5.90 (d), 7.87 (d) 
28 Catechin 2.55 (dd), 2.90 (m), 4.24 (m), 6.00 (d), 6.09 

(d), 6.84 (dd), 6.93 (m) 
29 Epicatechin 2.77 (dd), 2.93 (m), 4.33 (t), 6.09 (dd), 

6.92 (m), 7.03 (s) 
30 p-Hydroxyphenylacetic acid 3.44 (s), 6.84 (dt), 7.17 (dt) 
31 Tyrosine 6.88 (d), 7.18 (d) 
32 Gallate 7.15 (s) 
33 Phenethyl alcohol 2.86 (t), 2.91 (m), 3.84 (t), 7.30 (m), 7.37 

(m) 
34 Phenylalanine 3.12 (dd), 3.28 (dd), 4.00 (dd), 7.32 (d), 

7.40 (m) 
35 Chlorogenate 2.04(m), 2.18 (m), 3.88 (dd), 4.2 (m), 5.32 

(m), 6.43 (d), 7.03 (d), 7.13 (d), 7.21 (d), 
7.68 (d) 

36 Formate 8.30 (s) 
37 Histidine 8.65(s), 7.39 (s), 4.04 (dd), 3.34 (m) 
38 Trigonelline 4.43 (s), 8.08 (t), 8.83 (d), 8.84 (d), 9.13 (s) 

b Peak multiplicities in parentheses: s, singlet; d, doublet; t, triplet; dd, 
doublet of doublets; dt, doublet of triplets; q, quartet; and m, multiplet. The 
chemical shifts were determined at pH 3.1 and expressed relative to DSS at 
0 ppm. *, not of plant origin, probably phytate.  

A. Mascellani, et al.   Food Chemistry 339 (2021) 127852

3



classification by type and wine grape variety. This method generates a 
combination of decision trees using a bootstrap sample. The number of 
trees were set to 500; 70% of the samples were used as the training 
subset, and the remaining 30% of the samples were used as the testing 
subset. Calculations were performed using the ‘randomForest’ package 
4.6–14 (Liaw & Wiener, 2002) available in R 3.5.0. A classification tree 
was fit to each bootstrapped sample, and each node within a tree was 
constructed by selecting a random subset of the environmental vari-
ables (for this parameter, mtry was set to 75). The RF algorithm was 
trained in two sequential steps. In the first stage, the RF model was 
trained to identify the type of wine. In the second step, the RF model 
was trained to discriminate different wine grape varieties. An addi-
tional RF model was built for the discrimination of Chardonnay from 
Pinot noir wines. Rosés and blancs de noir were excluded from the HC 
and RF analysis, as these are pinkish or white wines made from red 
grapes whose skins were removed before or after the beginning of 
fermentation. Another classification model was established by partial 
least squares-discriminant analysis (PLS-DA) obtained using the 
package ‘MetaboAnalyst’ version 2.0 (Chong et al., 2019) in R 3.5.0 
with the aim of classifying the wines according to sub-region. The wine 
grape varieties with the largest numbers of samples (Chardonnay, Pinot 
noir and Riesling) were classified according to origin (Mikulovská, 
Slovácká, Velkopavlovická and Znojemská). The PLS-DA model was 
validated by full (leave-one-out) cross-validation in which each sample 
was predicted by the remaining samples and the procedure were re-
peated 100 times. Pearson’s correlation analysis was used to investigate 
the links of residual sugar content and actual alcoholic strength with 
NMR bins in Excel (Microsoft Office Excel 2016). 

3. Results and discussion 

3.1. Metabolite profiling 

A representative one-dimensional (1D) 1H NMR spectrum acquired 
from a pooled sample of white and red wines is shown in Fig. 1. 1H 
NMR spectroscopy is based on the nuclear magnetic resonance prop-
erties of the hydrogen nucleus. Each hydrogen nucleus within a mole-
cule experiences a slightly different magnetic field because of its dis-
tinct chemical environment and absorbs energy at slightly different 
frequencies. Thirty-eight molecular structures were assigned and iden-
tified based on the analysis of 1D and 2D NMR spectra (Table 1) and 
comparisons with previous reports (Ali et al., 2011; Amargianitaki & 
Spyros, 2017; Consonni, Cagliani, Guantieri, & Simonato, 2011; Du 
et al., 2007; Larsen et al., 2006; Papotti et al., 2013). The compound 

classes comprised amino acids, carbohydrates, organic acids, alcohols 
and phenols. 

A 1H NMR spectrum is usually divided into three regions. The area 
between 0.8 and 4.0 ppm corresponds to amino acids as well as a few 
organic acids; peaks from alcohols (isobutanol, isopentanol, ethanol 
and methanol), aliphatic organic acids (lactic, pyruvic, acetic, and 
succinic), and amino acids (aspartate, methionine, alanine, γ-amino-
butyric acid, glutamate and proline) were observable. The region be-
tween 4.0 and 6.0 ppm is considered the region for carbohydrate pro-
tons; spectral distinction is extremely difficult due to peak overlap, even 
in the 2D spectra. Fructose and glucose were identified. The aromatic 
spectral region between 6.0 and 8.5 ppm is one of the most interesting 
because it includes the aromatic compounds that characterize different 
wines. Gallic acid, catechin, phenylacetate, phenylalanine and p-hy-
droxyphenylacetic acid were observed. The profiling was designed to 
obtain a representative description of the spectra to characterize the 
signals in the bins. 

3.2. Principal component analysis 

PCA reduces the dimensions of the original data matrix by linear 
combinations of a starting set of variables based on their maximum 
variance. Loading vectors are associated with each class, correlated 
with the original variables, and orientated toward the direction in 
which the maximum variance of variables is expressed in order to 
highlight possible differences or similarities among samples (Liland, 
2011). 

After excluding 14 strong outliers, PCA analysis was performed on 
the data matrix of 911 samples classified by types. The PCA score plot 
showed clear separation between the red and white wine clusters, with 
the first two principal components explaining 10.1% and 7% of the 
variation, respectively (Fig. 2A). PCA also showed potential for classi-
fying types of dry and medium dry, medium, sweet white and dry red 
wines. In the PCA cluster (Fig. 2A) describing white wines, three main 
sub-clusters were identified for dry and medium dry, medium and sweet 
white wines. The plot of the rosé and blanc de noir samples overlapped 
with that of dry and medium white wines. By contrast, relative dis-
persion of the sweet wine samples was observed, reflecting the varied 
nature of the samples. The loading plot (Fig. 2B) revealed the bins 
contributing to the differentiation. The loading plot showed high levels 
of bins containing signals from uridine (bin at 5.86) and unknown 
signals (bins at 4.38, 7.78) distinguishing white wines; red wines were 
discriminated by phenylalanine and phenylacetate (bin at 7.34), p-hy-
droxyphenylacetic acid, tyrosine and catechin (bins at 6.82, 6.86), 

Fig. 1. 1H NMR spectrum of a pooled wine sample (red, white and rosé) with metabolite assignment (Table 1).  
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turanose (bin at 5.26) and isobutanol, valerate and isopentanol (bin at 
0.86). White wines were separated into dry and medium dry, medium 
and sweet by bins by signals from glycerol and ethanol (bins at 3.74, 
3.56) and sugars including glucose and fructose (bins 3.38–3.74). 

3.3. Hierarchical clustering of wine grape varieties 

A heatmap is a data visualization tool that uses colour for a set of 
parameters and an associated score on multiple objectives. It is a two- 
dimensional array in which the dimensions are groups and bins and 
groups are clustered based on similarity (Liland, 2011). In the heatmap, 
each row is a bin ranked by ANOVA, and each column is a category 
group average ordered by HC. HC is an unsupervised method that re-
cognizes and distributes data groupings according to their affinity in 
clusters of progressive dissimilarity. These clusters are presented as a 
dendrogram in which it is assumed that closer objects in a space defined 
by variables have greater similarity in their properties. HC was con-
ducted to verify the classification of types according to their mutual 

dissimilarities. The resulting heatmap with the dendrogram and main 
descriptive values is shown in Fig. 3A. Consistent with the results of 
PCA, grouping of the Czech wines based on types revealed two distinct 
clades. The first clade contained red wines, and the second included 
white wines, rosés and blancs de noir. Rosés and blancs de noir be-
longed to the same clade as dry and medium white wines. The features 
included in the heatmap were tentatively identified, and the colour 
coding revealed major intensities of red wines in bins with signals as-
signed to uridine (bins 5.86, 7.86), isopentanol (bin 0.86), tyrosine/ 
phenols (bin 6.82), and acetate (bin 2.02), confirming the PCA results. 

The second heatmap showed clustering of wine grape varieties that 
were represented by more than 20 samples in our sample set (Fig. 3B). 
Czech wines were split into two distinct clades corresponding to wine 
grape varieties from red grapes and those from white grapes. Pinot noir 
and Cabernet Sauvignon belonged to the same clade, which was clus-
tered with Blaufränkisch. This clustering was mainly based on the lower 
signal intensities of uridine (bin 5.86) and tartrate (bin 0.86) and the 
higher signal intensities of turanose (bin 5.26), catechin, p- 

Fig. 2. PCA score plot (A) and loadings plot (B) derived from 1H NMR spectra of Czech wines. Red dots: dry and medium dry white wines; yellow dots: medium white 
wines; pink dots: sweet wines; light blue dots: rosés and blancs de noir; blue dots: dry red wines; green dots: other red wines. The loadings in (B) represent uridine 
(bin 5.86), phenylalanine and phenylacetate (bin 7.34), p-hydroxyphenylacetic acid, tyrosine and catechin (bins 6.82, 6.86), turanose (bin 5.26), isobutanol, valerate 
and isopentanol (bin 0.86), glycerol and ethanol (bins 3.74, 3.56), sugars including glucose and fructose (bins 3.38–3.74) and unknown signals (bins 4.38, 7.78). 

Fig. 3. Hierarchical clustering derived from 1H NMR spectra of Czech wines by types (A) and wine grape varieties (B). The heatmap colour reflects the normalized 
intensity of the bins: blue: inferior; red: superior; grey: equal intensity. Clustering was performed on normalized and autoscaled binned-aligned 1H NMR spectra using 
the Pearson distance and cluster aggregation based on the average linkage method. Groups were clustered using group means. The features were ranked by ANOVA. 
Uridine (bins 5.86, 7.86), isopentanol (bin 0.86), acetate (bin 2.02), turanose (bin 5.26), catechin, tyrosine and p-hydroxyphenylacetic acid (bins 6.08, 6.10, 6.82, 
6.86), isobutanol and isopentanol (bin 0.86) and tartrate (bin 4.38). 

A. Mascellani, et al.   Food Chemistry 339 (2021) 127852

5



hydroxyphenylacetic acid (bins 6.02, 6.10, 6.82, 6.86), isobutanol and 
isopentanol (bin 0.86). With respect to white wine grape varieties, the 
heatmap showed similarities between Pinot gris and Pinot blanc, which 
is a white mutation of Pinot gris; these wine grape varieties differed in 
bins 6.86, 6.02 and 3.3. Pinot blanc and Pinot gris arose as independent 
somatic mutations of Pinot noir (Vezzulli et al., 2012), but here they 
showed no significant similarities with this predecessor. Hibernal and 
Riesling belonged to the same clade; interestingly, Hibernal is a genetic 
crossbreed of the Seibel and Riesling wine grape varieties, but this clade 
also includes Grüner Veltliner, which originated from a natural cross 
involving Sauvignon Blanc. 

3.4. Random forest analyses for type and wine grape variety 

The RF algorithm is an ensemble learning method used for classi-
fication that generates a combination of decision trees using a bootstrap 
sample (Breiman, 2001). One of the main advantages of RF is its ability 
to assess the relative importance of variables describing the target 
problem (Breiman, 2001; Gómez-Meire et al., 2014; Menze et al., 
2009). First, the RF model was trained to identify wines by type; the 
training and test sets were composed of 635 and 268 randomly assigned  
1H NMR spectra, respectively. To reduce the risk of over-fitting, the test 
set was not used to construct the model. Internal validation of the RF 
model resulted in a rather satisfying OOB error (8.82%), where the 
classification error was always higher for rosés and blancs de noir. 
Rosés and blancs de noir were classified by the model as dry, medium 
dry or medium white wines, as shown in the confusion matrix 
(Supplementary Material Table S3) and the classification performance 
(Supplementary Material Table S6). The red wine types classified as 
“other” were represented by a relatively low number of samples; for a 
robust model, a higher number of samples is needed. The model clas-
sified white dry and medium dry, medium and sweet wines with greater 
than 93% correctness, with sensitivity values of 0.95, 0.89 and 1 and 
specificity values of 0.93, 0.95, and 0.98, respectively. Among dry red 
wines, 99.93% were correctly classified. The most important features 
for type prediction as ranked by Mean Decrease Gini (Supplementary 
Material Figure S2A) were bins containing signals of fructose (bins 
3.78, 3.86, 4.06, 3.82, 3.7 ppm), uridine (bin 5.86 ppm), ethanol (bin 
1.02 ppm), catechin (bins 5.98 and 6.06 ppm), tyrosine (bin 3.5 ppm) 
and glycerol (bin 3.5 ppm). 

Given the high accuracy in classifying red and white wines, a second 
RF model was trained to discriminate 13 wine grape varieties (in-
cluding at least 20 samples) using a total of 679 1H NMR spectra. The 
training and test sets were composed of 459 and 201 1H NMR spectra, 
respectively. To reduce the risk of over-fitting, the test dataset was not 
used to construct the model. An OOB error of 40.31% was obtained for 
this model. The trained RF model for wine grape varieties classified 
Pinot noir with 96% correctness, Blaufränkisch 96%, Riesling 92%, 
Cabernet Sauvignon 77%, Chardonnay 76%, Gewürtztraminer 60%, 
Hibernal 60%, Grüner Veltliner 52%, Pinot gris 48%, Sauvignon Blanc 
45%, Pálava 40%, Welschriesling 28% and Pinot blanc 13% 
(Supplementary Material Table S4 and Table S7). The most important 

features as ranked by Mean Decrease Gini (Supplementary Material  
Figure S2B) were the bins containing signals of proline (bins 1.98, 2.3, 
3.3), phenylalanine (bin 7.46), methanol (bin 3.3), catechin (bins 6.02, 
6.06, 6.9), tyrosine (bin 7.18) and epicatechin (bins 6.06, 7.02). Pálava 
was strongly misclassified by the model as Chardonnay; the heatmap 
(Fig. 3) clustered both wine types in the same clade as Gewürtz-
traminer. Pinot blanc was mainly misclassified as Chardonnay and 
Pinot gris, and Pinot gris was mainly misclassified as Welschriesling. 

1H NMR has previously been reported to be a powerful method for 
assessing wine grape variety, although in much smaller studies than 
ours. Amargianitaki & Spyros (2017) used 1H NMR spectroscopy com-
bined with multivariate statistical analysis to classify different wine 
grape varieties cultivars grown in Germany. The wine grape varieties 
Pinot noir, Lemberger, Pinot blanc/Pinot gris, Müller-Thurgau, 
Riesling, and Gewurztraminer were successfully classified. The com-
pounds responsible for differentiation in their study were shikimic acid, 
caftaric acid, and 2,3-butanediol (Godelmann et al., 2013). Wine grape 
varieties are known to carry specific molecular signatures. A previous 
characterization showed that Riesling wines have higher levels of ca-
techin, caftarate, valine, proline, malate, and citrate (Ali et al., 2011). 
Clear separation of Cabernet Sauvignon and Shiraz wines based on their 
respective metabolite profiles has also been reported; Cabernet Sau-
vignon and Shiraz wines produced in Australia were separated by 
higher levels of proline in the Cabernet Sauvignon (Rochfort et al., 
2010). 

Chardonnay and Pinot blanc are two wine grape varieties of grape 
that represent a challenge for accurate classification. They are often 
mistaken, incorrectly classified by growers or incorrectly labelled. The 
two wine grape varieties are characterised by ampelographic simila-
rities and historically have often been replaced for each other; in 
winemaking, they are often interchanged intentionally or by mistake. 
The RF model was used to classify Chardonnay (70 samples) and Pinot 
blanc (47 samples). The training and test sets were composed of 82 and 
35 1H NMR spectra, respectively, and the test dataset was not used to 
construct the model in order to reduce the risk of over-fitting. The RF 
OOB error was 23.17%. The trained RF model classified Chardonnay 
with 81% correctness and Pinot blanc with 71% correctness 
(Supplementary Material Table S5 and Table S8). The most important 
features ranked by Mean Decrease Gini bins were bins at 1.98, 2.30 and 
3.30 containing acetic acid and unknown signals. 

3.5. Sub-region classification by PLS-DA 

PLS-DA is a linear classification model based on the principal least 
squares regression algorithm. The model searches for latent variables 
(LVs) with maximum covariance across bins (Liland, 2011; Römisch 
et al., 2009). PLS-DA was used to classify the origins of the three most 
represented wine grape varieties: Chardonnay (Q2  <  0, R2 = 0.5), 
Riesling (Q2  <  0, R2 = 0.6) and Pinot noir (Q2  <  0, R2 = 0.8) 
(Fig. 4). For all wine grape varieties, an unclassifying prediction model 
was built. The winemaking sub-regions are located next to each other, 
and the samples are thus expected to show a gradient rather than 

Fig. 4. PLS-DA score plots of LV1 and LV2 of Chardonnay (A), Riesling (B) and Pinot noir (C) from four sub-regions of Moravia.  
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distinct classes. However, on average, the sub-regions are characterized 
by different soil conditions, winemaking practices, grape culture and 
water management. In the Znojemská sub-region, grapes are grown on 
clay and humic clayey soil, while limestone soil prevails in the Miku-
lovská sub-region. Precipitation also differs slightly. NMR has been 
shown to be a suitable tool to investigate the influence of the geo-
graphic region where grapes are grown (Amargianitaki & Spyros, 
2017). The main factors contributing to these classifications are en-
vironmental parameters such as soil geology and composition, climate, 
water availability, and light exposure. The origins of wines can be 
differentiated based on the content of succinic acid, sugars such as 
glucose and fructose and glycerol (Viggiani & Morelli, 2008; Mazzei 
et al., 2010; Ali et al., 2011; Godelmann et al., 2013). NMR spectro-
scopy and chemometrics were previously used to classify mature grape 
berries produced in four different regions in Bordeaux (France) (Pereira 
et al., 2005). 

3.6. Correlations with actual alcoholic strength and residual sugar content 

NMR is a highly quantitative analytic method with a wide linear 
signal range spanning more than 6 orders of magnitude (Mo & Raftery, 
2008). Several quantitative NMR methods have been introduced and 
validated for the determination of natural compounds, biocides and 
alcohols (Maniara, Rajamoorthi, Rajan, & Stockton, 1998; Okaru et al., 
2020; Un & Goren, 2017). In the process of introducing a wine to the 
market called classification, winemakers must provide a certificate of 

analysis for each batch that includes actual alcoholic strength and re-
sidual sugar content. These analyses are performed by commercial 
analytical services provided by certified laboratories. These metadata 
were correlated with NMR spectral bins using Pearson’s correlation. As 
shown in Fig. 5A, there was only a moderate correlation with the de-
clared actual alcoholic strength, r = 0.75, possibly due to either 
changes during maturation in the bottle.A tolerance of up to 0.5 0.8% 
v/v is permitted by the EU law (EU 2019/33). By contrast, the residual 
sugar content declared by the certified analysis was highly correlated 
with the sum of bins including signals from α-glucose and fructose, with 
r = 0.98 (Fig. 5B). The negative correlation between bins including 
signals from sugars and ethanol is the effect of alcoholic fermentation. 

4. Conclusion 

In this study, we investigated the capability of 1H NMR spectroscopy 
for quality control of Czech wines. 1H NMR spectroscopy coupled with 
advanced data analysis and chemometrics was effective in the classifi-
cation of wine grape variety, type, and, in part, region. 

The large dataset of 917 wine spectra allowed us to train a random 
forest model, capable of simultaneous classification of each wine type 
and wine grape variety with high correctness, particularly for Pinot 
noir, Blaufränkisch, Riesling, Cabernet Sauvignon, Chardonnay, 
Gewürtztraminer, Grüner Veltliner, Pinot gris, Sauvignon Blanc, Pinot 
blanc and Welschriesling. The frequently interchanged wine grape 
varieties Chardonnay and Pinot blanc could be distinguished with 

Fig. 5. Binned 1H NMR spectrum colour-coded according to Pearson’s correlation coefficient with residual sugar content and actual alcoholic strength metadata.  
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moderate correctness. Moreover, the model could partially distinguish 
between two sub-regions. Metabolomics not only provides a better 
understanding of wine character but, more importantly, is also a facile 
and rapid tool for assessing many aspects of wine quality. The appli-
cation of the random forest algorithm for the purpose and scale of wine 
authentication of this study represents a novel, yet unexplored state-of- 
the-art approach with promising potential for Food Authorities. 
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