

"Classical" Evaluation

Common parameters

- ~ Performed manually or with software
 - ~ CASA (Computer Assisted Semen Analysis)
- Allow for quality estimation \sim < 60% of variation in fertility identified with these methods

Are there other features in sperm/semen that reflect fertility?²

Measurable differences that correlate with fertility

Low Fertility

"Ideal" Sperm Biomarkers

Potential Biomarkers

Small Non-coding RNAs

- → ~15 35 nt RNA sequences
- Usually associate with Argonaute (AGO) family proteins
 Post-transcriptionally regulate the transcriptome (somatic
- Post-transcriptionally regulate genes, transposons)
- Experimentally linked to spermatogenesis and sperm quality
- \sim "Functional biomarkers" of many (human) diseases
- Present in sperm

Small Non-Coding RNAs (sncRNAs)

MicroRNAs (miRNAs)

~ ~ 20 nt RNA

Silence mRNAs by RNAi Associate with AGO proteins

tRNA-derived

- 18 50n nt RNA
- Recently implicated in fertility and found in bovine sperm

Classes

PIWI-interacting RNA (piRNA) ~ 24–32 nt RNA

- \sim Silence TEs + mRNAs by RNAi - Associate with PIWI (AGO) proteins
- Also recruit histone and DNA methyltransferases – longer term changes in gene expression.

Sperm-borne sncRNA are associated with differences in bovine fertility

Objectives

Use Illumina sequencing to identify fertility-linked differences in sncRNA expression patterns

Subtle, idiopathic fertility differences

High Fertility - Passed Corporate QC Standards. \sim Fertility: +2.1 ± 0.7 → Sire Conception Rate

Bovine Subfertility

Low Fertility ~ Passed Corporate QC Standards. \sim Fertility: -2.1 ± 1.1 - Sire Conception Rate

Bovine Subfertility

Subtle, idiopathic fertility differences

High Fertility → Passed Semex QC → Fertility: +2.1 ± 0.7 → Sire Conception Rate

Low Fertility Passed Semex QC Fertility: -2.1 ± 1.1 Sire Conception Rate

Isolate RNA

Percoll gradient to purify sperm

Column based total **RNA** extraction

Next Generation Sequencing

Sample Preparation

Library prep NEXTflex small RNA

Size selection

- → SAGE Pippin Prep
 - → 140-170 bp

Sequence

Illumina NextSeq

Next Generation Sequencing

Bioinformatics: Differential Expression Analysis - miRNAs

DE sequences Identify differences in expression between fertility conditions T-test, FDR correction

miRNA	Enhanced Mean	Standard Mean	log2FoldChange	pvalue	FDF
miR-2450c-3p	6	0	-0.00	0.000	С
miR-2311-5p	4	0	-0.00	0.000	О
ppc-mir-2274-5p	2	0	-0.00	0.000	С
miR-409a-3p	60	24	-0.02	0.000	С
miR-543	136	52	-0.02	0.000	С

11

miRNA:miRNA Relationships

miRNAs may share:

Gene targets

- Functional pathways

Transcription regulators

Correlation Analysis

Corral-Vazquez C, Salas-Huetos A, Blanco J, Vidal F, Sarrate Z, Anton E. Sperm microRNA 555 pairs: new perspectives in the search for male fertility biomarkers. Fertil Steril (2019) 112:831–556 841. doi: 10.1016

Correlation Analysis

 May represent functional differences that affect fertility which are then reflected in the sperm miRNAs.

Correlation Analysis

miRNA:miRNA relationships

Analysis requirements

Significant Spearman correlation in high and low fertility samples

Inverse trends in the different fertility conditions

• Enhanced Fertility + Standard Fertility

Correlation Analysis

Multiple significant relationships identified

O High Fertility

/ + Low Fertility

Summary

Sperm-borne miRNAs

Similar RNAs are Most Abundant

No differences in the rank order or overall placing of the top 5 miRNAs identified

16

PIWI Proteins

- P-element Induced Wimpy testis (Drosophila Phenotype)
- Associate with piRNA to effect RNAi

Transposable elements

- → Self-replicating genomic sequences
- Expressed during
 - reprogramming
 - ~ Suppressed to protect genome

BIOLOGY OF REPRODUCTION (2016) 94(4):75, 1-11 Published online before print 24 February 2016. DOI 10.1095/biolreprod.115.136721

Identification of *PIWIL1* Isoforms and Their Expression in Bovine Testes, Oocytes, and Early Embryos¹

Stewart J. Russell,³ Leanne Stalker,³ Graham Gilchrist,³ Alanna Backx,³ Gonzalo Molledo,³ Robert A. Foster,⁴ and Jonathan LaMarre^{2,3}

³Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada ⁴Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada

RESEARCH

Bovine piRNA-like RNAs are associated with both transposable elements and mRNAs

Stewart Russell¹, Mehool Patel¹, Graham Gilchrist¹, Leanne Stalker¹, Daniel Gillis¹, David Rosenkranz² and Jonathan LaMarre¹

¹Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada and ²Anthropologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany

Correspondence should be addressed to J LaMarre; Email: jlamarre@uoguelph.ca

BIOLOGY of REPRODUCTION

Official Journal of the Society for the Study of Reproduction

piRNA Identification "Pipeline"

Collaboration with D. Rozenkranz and colleagues, University of Mainz

Sperm piRNA Characteristics

Read length distribution

- Consistent across fertility groups
- ~ 29-30 nts most common read read length Consistent with expected piRNAs

Transcript Length

Principal component analysis No overall differences in piRNA expression by individual or cluster

PC1: 53% Variance

0.0

0.4

21

Differential Expression

→ 83 DE piRNAs

Mostly over-expressed in high fertility
 Very low relative expression

→ 3 DE clusters

- Expressed in few bulls

22

Sperm piRNA Characteristics

Cluster Expression

By chromosome Consistent across fertility groups Expected No piRNAs from Chr 20 Contains 4 clusters

Figure modified from: https://www.smallrnagroup.uni-mainz.de/piRNAclusterDB/data/FASTA/Bos_taurus.piC_chromosomes.html

Transposable Element Targeting

piRNAs complementary to expressed TE Transcripts

- Abundant targeting of TEs
 - \sim SINEs
 - ~ LTRs
 - ~ LINEs

No fertility-associated differences

Werry *et al.* Unpublished

Secondary piRNA biogenesis

Amplification loop

- 1. Primary biogenesis ~ Yields mature piRNA
- 2. PIWI association → Forms piRISC
- 3. TE cleavage Yields secondary piRNA
- 4. PIWI association → Forms piRISC
- 5. Transcript cleavage ~ Ping-Pong repeats

Cytoplasm

Presence of 2° piRNAs reveals active targeting – Sequences are actually derived from the RNA target.

atic.vecteezy.com/system/resources/previews/002/634/903/original/tennis-court-top-view-illustration-vector.jpg

Ping-Pong "Signature" in Sperm RNA

10 nucleotide overlap

Active secondary biogenesis Similar overlap profile in both high and low fertility

Werry et al. Unpublished

Ping-Pong Signature

10 nucleotide overlap in sequence data

Active secondary biogenesis

- Similar in high and low fertility
- Indicates functional activity of piRNAs Target suppression required for Ping-Pong
- Active Ping-Pong in majority of bulls - Some exceptions in both fertility groups

Summary

Sperm-borne piRNAs

TE Targeting

SINEs, LTRs, LINEs are abundantly targeted by piRNA in bovine sperm

Overall Conclusions

However.....

"Disentangling genetic and environmental effects (on small RNA populations) will require a large number of bulls from several breeds to be raised altogether in the same semen production center to evaluate the breed effect, and to duplicate this design in several semen production center to measure the environmental effect."

Schibler Group: Sellem et al. Epigenetics Chromatin. 2020; 13: 19.

Small RNAs represent useful potential biomarkers of bull fertility.

Small RNAs as "Epigenomic Metadata"

Acknowledgements

Current Trainees:

Nick Werry Marangaby Mahamat Vanessa Zak

Collaborators

Dr. Stewart Russell Dr. Cliff Librach Dr. Dan Gillis

<u>Alumni:</u>

Leanne Stalker Graham Gilchrist Thomas Parmentier Allison Tscherner Natasha Martin Gonzalo Molledo

Acknowledgements

