The 3rd CZU hybrid seminar - 2024 Biotechnology in small ruminant reproduction: an international experience

Antifreeze proteins: potential cryoprotectant of gametes and embryos from small ruminants

Lucas Francisco Leodido Correia

Universidade Federal Fluminense

Introduction

McMurdo Strait Water temperature -1.87 °C

Introduction

Freezing Resistance in Some Antarctic Fishes

Abstract. Measurements of serum freezing points in three Antarctic marine fishes indicated that they do not freeze in the $-1.87^{\circ}C$ seawater because their blood is isosmotic to seawater. Concentrations of sodium chloride, urea, and free amino acids in the serum accounted for only half of the freezing-point depression of the serum. A protein containing carbohydrate was isolated which accounted for 30 percent of the freezing-point depression of the serum.

AAAS

(1969)

Science

Arthur L. DeVries

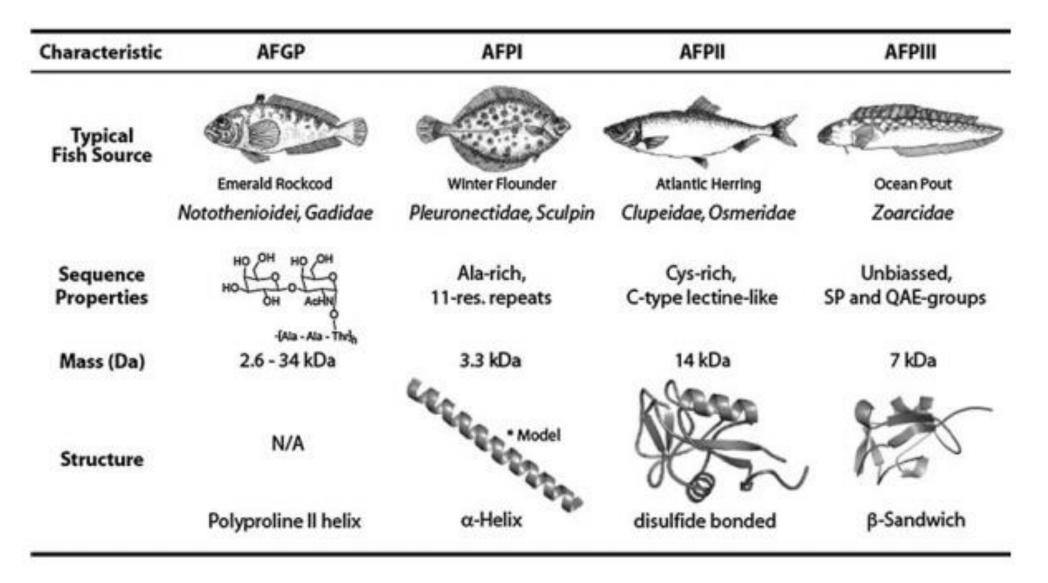
Paraliparis devriesi

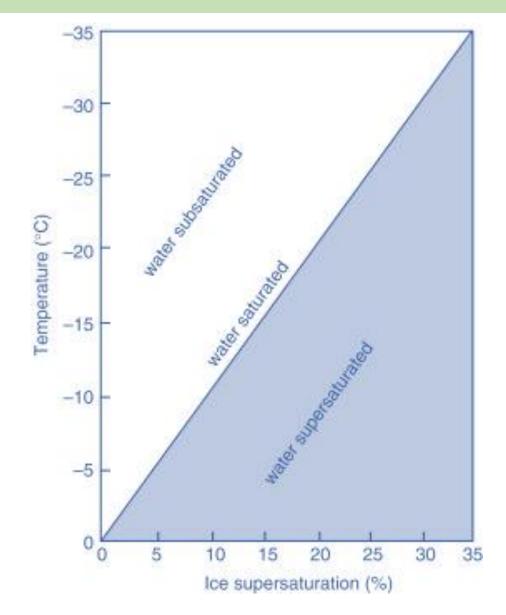
Donald E. Wohlschlag

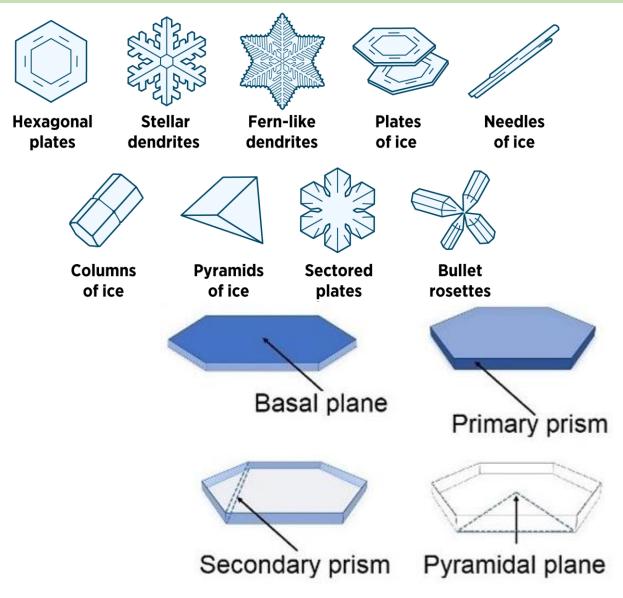
Wohlschlag Bay

Introduction

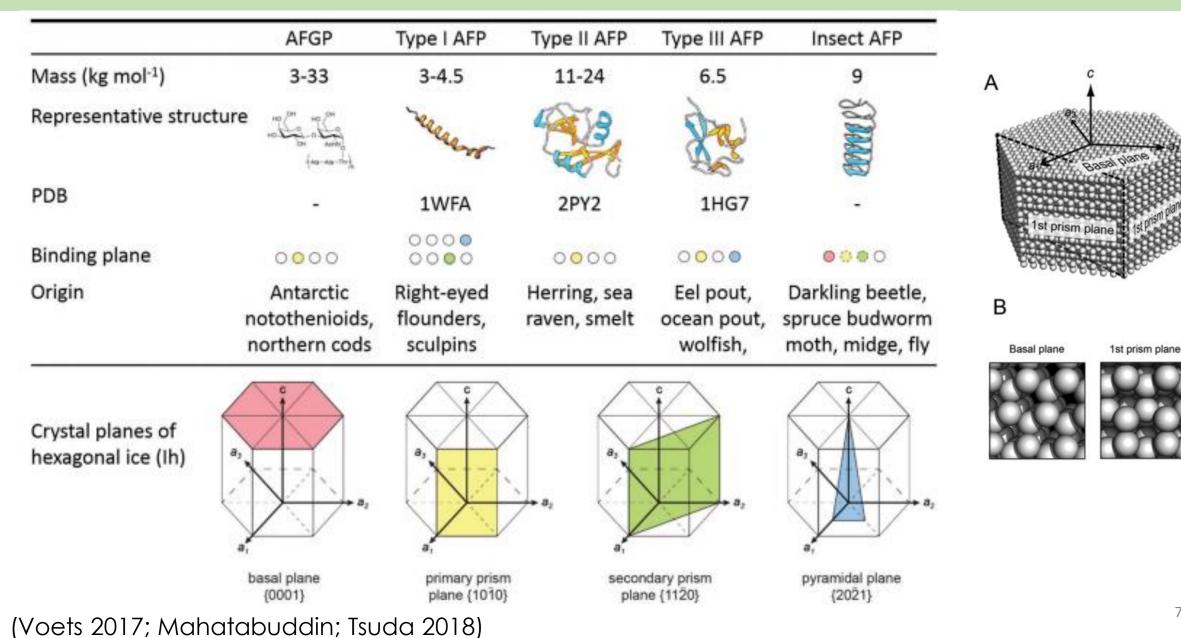
Fish	Serum freezing point (°C)	Serum chloride (mmole/liter)
T. borchgrevinki	$-2.07 \pm 0.014(28)$	235 ± 1.6(26)
T. hansoni	$-2.01\pm0.019(24)$	$259 \pm 4.3(24)$
T. bernacchii	$-1.98 \pm 0.007(25)$	$254 \pm 1.9(25)$
T. hansoni	$-1.92 \pm 0.015(13)$	258±3.3(13)
T. bernacchii	$-1.87 \pm 0.008(14)$	$254 \pm 4.4(14)$


Table 1. Data on blood serum of three Antarctic fishes


Fig. 1. Trematomus bernacchii resting on mass of anchor ice in 20 m of water in McMurdo Sound, Antarctica. [Photo by Paul Dayton]

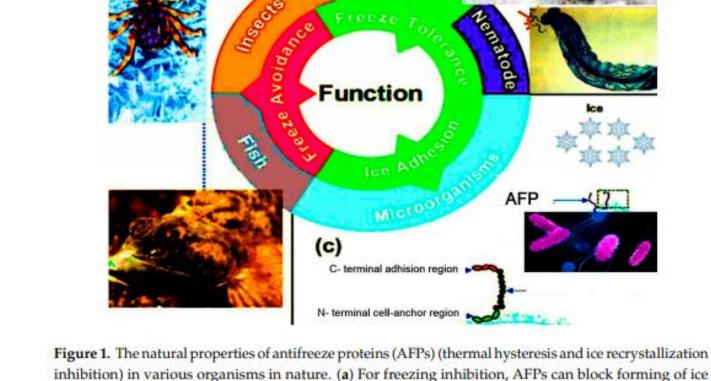

(DeVries; Wohlschlag 1969)

Antifreeze Proteins (AFPs)


Ice Crystals

(Pruppacher and Klett, 1978; Cotton et al., 2011; Correia et al., 2021)

AFPs and Ice Crystals

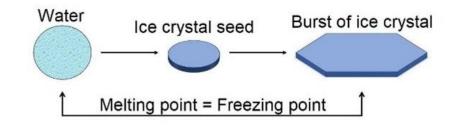

7

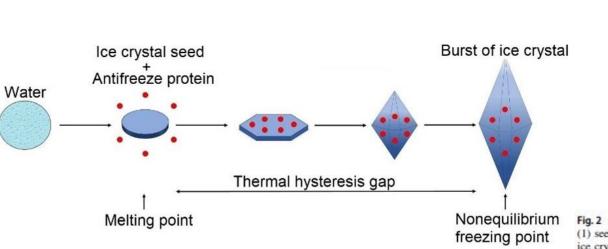
Mechanism of action

A- Freezing inhibition B- Freezing tolerance C- Ice binding

Thermal Hysteresis

Inhibition of ice recrystallization

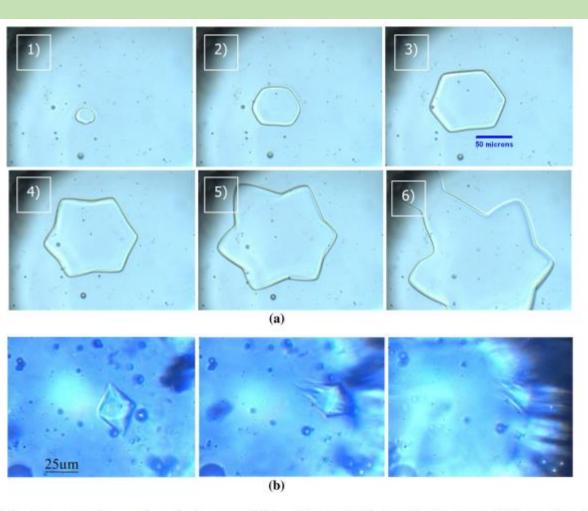
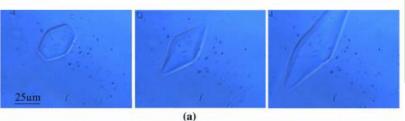
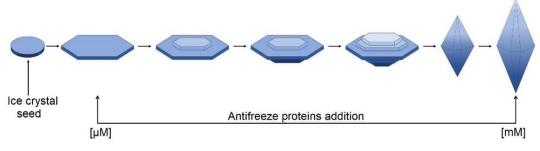
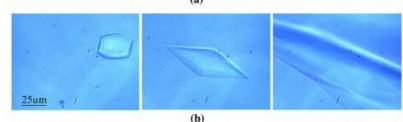

Fluid

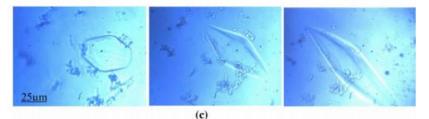

(a)

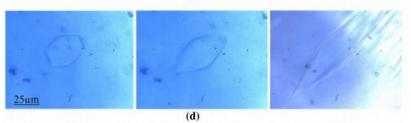
inhibition) in various organisms in nature. (a) For freezing inhibition, AFPs can block forming of ice crystals in fish and insects by lowering down the freezing points in body fluids. (b) In plants and nematode, freeze-tolerating is carried out by binding the AFPs to the surface of ice and prevent it from becoming larger ice crystals. (c) AFPs of different microorganisms can adhere to the ice surface, like *Marinomonas primoryensis*, and inhibit the formation of ice crystals. Adhesion of AFPs to ice can be done from three regions: C terminal, N terminal, and intermediate repeat [10].

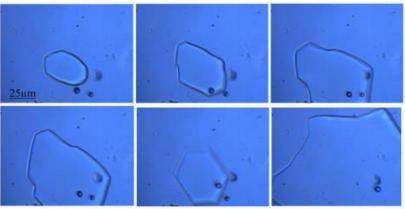
(Eskandari et al., 2020)

Thermal hysteresis


Fig. 2 a Photo images of an ice crystal growing in water at 0 °C: (1) seed ice, (2) the ice crystal growing on the prism facets, (3) the ice crystal has formed a hexagonal shape, (4) the ice crystal further growing from the edges of the hexagon, (5) the ice crystal has formed a star-like shape, and (6) the ice crystal burst into the water from a tip of its star-like shape; **b** photo images of an ice crystal confined by the wild-type type-I AFP at a concentration of 6.0 mg/ml, undergoing decreases in temperature from -0.09, to -0.64 and to -0.65 °C, respectively, from the left to right (the darker circles in the photo images represent air bubbles in the water and the solution)


Thermal hysteresis



∢Fig. 4 Photo images of ice crystals confined by a MSL-labeled L23C at a concentration of 8.0 mg/ml at − 0.15, − 0.63, and − 0.72 °C, respectively, from left to right; b MSL-labeled L12C at a concentration of 8.0 mg/ml at − 0.08, − 0.34, and − 0.52 °C, respectively, from left to right; c MSL-labeled A20C at a concentration of 8.0 mg/ml at − 0.10, − 0.65, and − 0.74 °C, respectively, from left to right; d MSL-labeled A11C at a concentration of 8.0 mg/ml at − 0.05, − 0.23, and − 38 °C, respectively, from left to right; and e MSL-labeled A17C at a concentration of 8.0 mg/ml at − 0.01, − 0.02 °C, respectively, from left to right to right (top), and − 0.02 °C, respectively, from left to right (down) (the differences in hue were caused by the filters used when the images were taken)

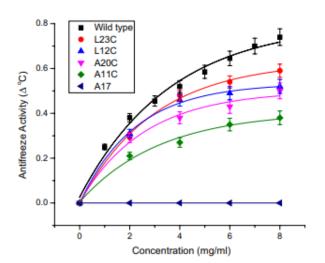


Fig.3 Antifreeze activity of the wild-type type-I AFP (black squares), spin-labeled L23C (red discs), spin-labeled L12C (blue, upward-pointing triangles), spin-labeled A20C (purple, downward-pointing triangles), spin-labeled A11C (green diamonds), and spin-labeled A17C (navy blue, leftward-pointing triangles)

(Flores et al., 2018; Correia et al., 2021)

Thermal hysteresis

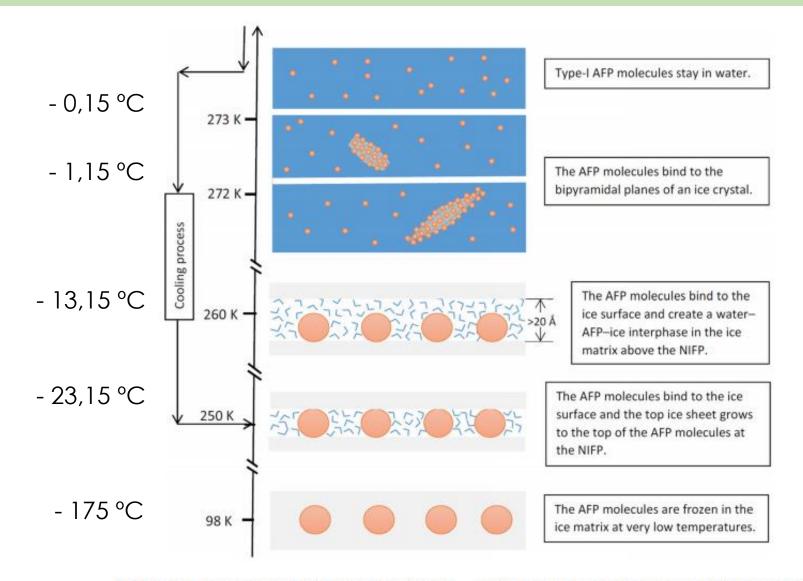
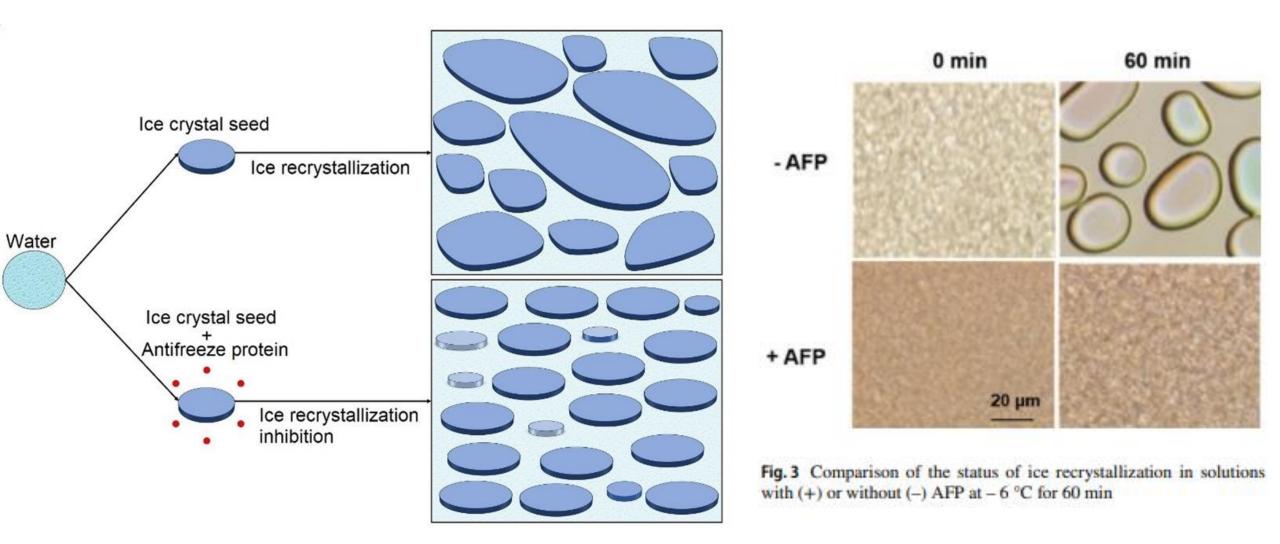
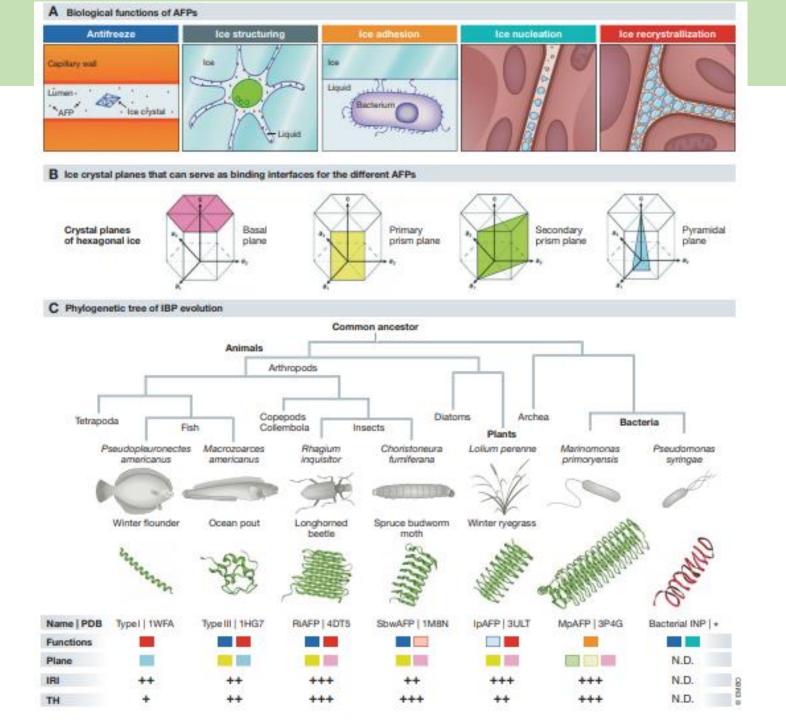
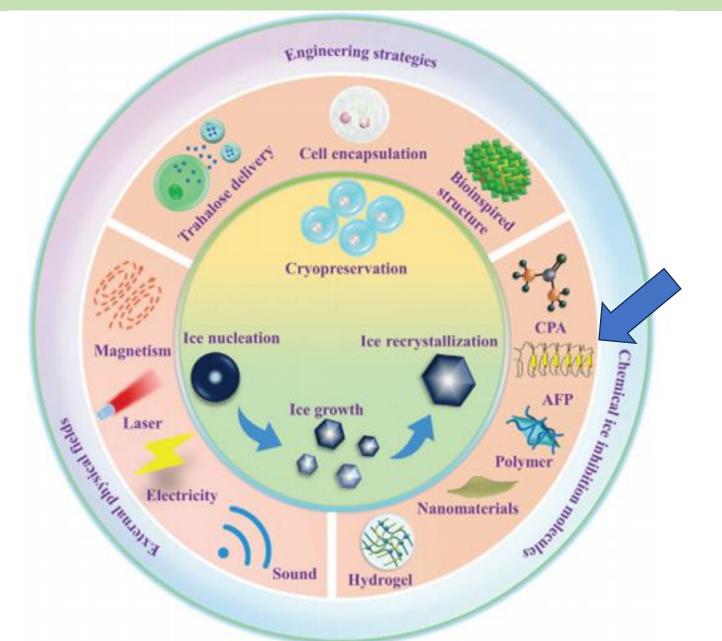




Fig. 11 Cartoon presentations of the states of water and AFP molecules in the type-I AFP solution at different temperature ranges during the cooling (down) and heating (up) process. The gray color represents hexagonal ice, the blue color represents liquid water, and the orange color represents AFP molecules

(Flores et al., 2018)

Inhibition of ice recrystallization



(Tas et al., 2021)

13

Cryopreservation strategies

(Tas et al., 2021)

Theriogenology 176 (2021) 94-103

Antifreeze proteins for low-temperature preservation in reproductive medicine: A systematic review over the last three decades

Lucas F.L. Correia ^{a, 1}, Bruna R.C. Alves ^{a, 1}, Ribrio I.T.P. Batista ^a, Pascal Mermillod ^b, Joanna M.G. Souza-Fabjan ^{a, *}

^a Departamento de Patologia e Clínica Veterinária, Faculdade de Veterinária, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil ^b Physiologie de la Reproduction et des Comportements, UMR7247, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Nouzilly, Indre-et-Loire, France

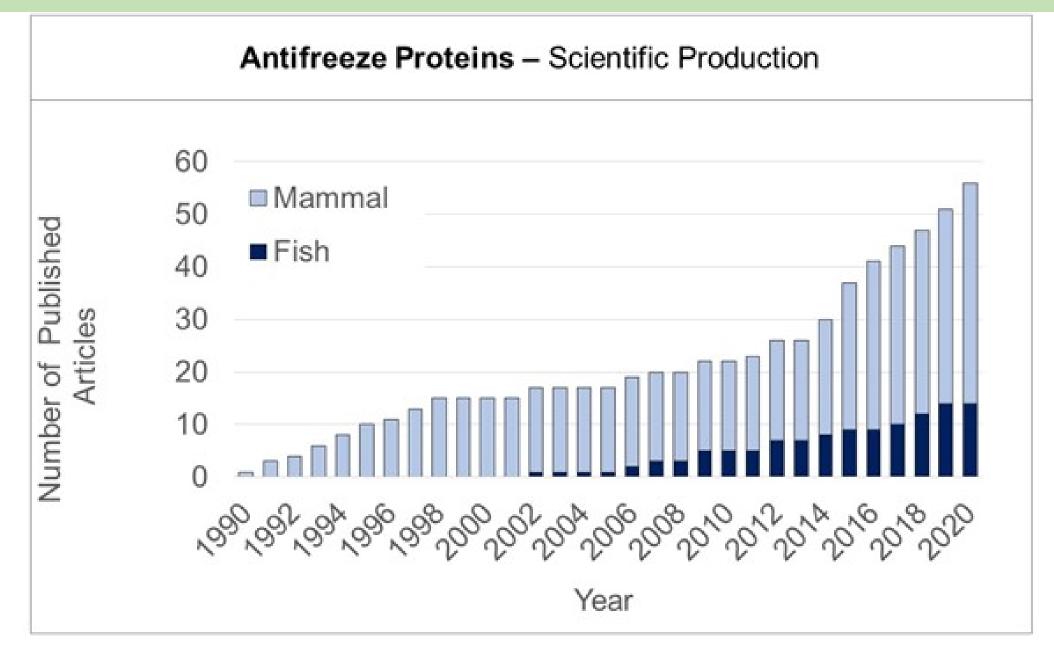
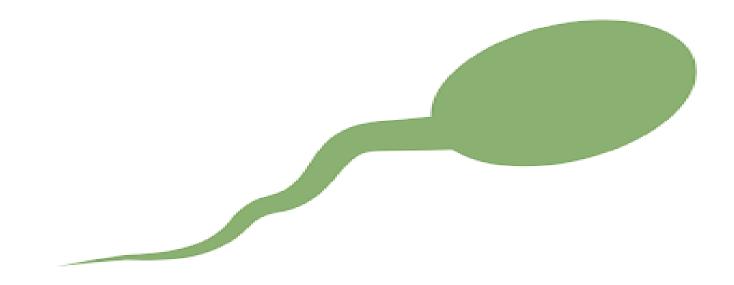


Table 2. Data of outcomes analysis on low-temperature preservation of germplasm and embryos with antifreeze proteins (AFPs) 1990-2020.

			Articles	Experiments			
				Total	Cold Liquid	Slow-freezing	Vitrification
Semen	Mammal	Total number	16	23	8	21	0
		Positive outcomes (%)	93.8	82.6	0	90.5	
		Negative outcomes (%)	43.8	30.4	25	23.8	
	Fish	Total number	9	11	2	6	3
		Positive outcomes (%)	88.9	90.9	100	83.3	100
		Negative outcomes (%)	44.4	36.4	0	16.7	100
Oocytes	Mammal	Total number	14	18	6	0	15
		Positive outcomes (%)	92.9	88.9	66.7		86.7
		Negative outcomes (%)	28.6	27.8	16.7		26.7
Embryos	Mammal	Total number	10	19	6	5	9
		Positive outcomes (%)	80	52.6	33.3	0	88.9
		Negative outcomes (%)	50	31.6	0	80	22.2
	Fish	Total number	3	5	3	2	1
		Positive outcomes (%)	66.7	60	33.3	50	100
		Negative outcomes (%)	0	0	0	0	0

Table 1. The main positive effects of antifreeze proteins (AFPs) as cryoprotectant in low-temperature preservation of reproductive cells and tissues.

AFP effects in cryopreservation Semen	Oocyte	Embryos	Reproductive Tissue
 Reduce loss of motility [33,36-40,42- 45,48,50-53,55,56] Increase post-thaw survival [43,44,48,50,55] 	 Protect oolemma structure [31,58,59,62-64] Maintain maturation capacity [31,61,62,64] 	 Enhance survival after in vitro culture [77,78] Higher viability [73] 	 Maintain intact follicles [79,80] Reduce apoptotic follicles [79- 81]
 Improve osmotic resistance [35,41,43] Decrease loss in kinetic parameters [34,36,43,44,46,49,51,56] Support the lipid composition of plasma membrane [49] Reduce changes in protein expression pattern [50] Improve plasma membrane integrity [34,37-40,44,55] Improve fertility [39,51] Maintain acrosomal integrity [42,44,45] Maintain mitochondria membrane potential [34,45] Higher sperm normal morphology [34] 	 Increase viability [61,63,66,67] Preserve spindle structure [58,59,61,66] Maintain intracellular ATP [58] Increase embryo development [57,59,61,67,68] Reduce caspase activity [59,66] Improve fertilization [57,60,64,68] Stabilize microfilamentous morphology [60] Reduce ROS' production [61,66,67] Maintain mitochondria membrane potential [58] 	 Increase embryo development [31,73] Increase survival rate [46,67,74,77,78] Increase expansion after warming [74,75] Maintain mitochondria membrane potential [74] 	 Maintain intact primordial follicles [81] Increase cell viability [82,85] Maintain the survival after cryopreservation [78] Maintain the survival after transplantation [79,80] Enhance blastomere viability [78] Increase survival rate [82] Improve spermatogonia production [85]
*ROS: reactive oxygen species			


Supplementary Table 2. Characteristics of antifreeze proteins (AFPs) used in different experiments reported in this review.

Туре	Source / genome	Synthesis	Structure	Mass (kDa)	References in this review
AFP I	Pseudopleuronectes americanus (fish) Myoxocephalus scorpius (fish)		Alanine-rich α-helices	3.3 to 4.5	[32-35,42,47,49-51,54- 56,63,64,68- 71,77,84,85]
AFP II	Hemitripterus americanus (fish)		Alanin and cystein rich β-strands and α-helices, extensively disulfide bonded.	11 to 24	[63,64]
AFP III	<i>Macrozoarces americanus</i> (fish)	Natural	Globular β -strands connected by large loops, packed orthogonally into a β -sandwich.	6.5 to 14	[31,34- 37,43,44,46,47,49- 52,54-56,58-60,63- 65,67-71,76,78,79,85]
AFGP	Trematomas borgrevinki (fish) Dissostichus mawsoni (fish)		Ala–Ala–Thr repeats with a disaccharide attached to the threonyl hydroxyl group. Has 8 fractions.	2.7 to 32	[22,31,32,35,38,41,47,48 ,57,62,63]
LeIBP/LAFP	Glaciozyma sp (yeast)		Irregular β helical structure	27	[36,42,61,67,80,82,83]
FfIBP	Flavobacterium frigoris (bacteria)		Irregular β helical structure	25.3	[61,80,81]
rAFP III	Macrozoarces americanus (fish)		Globular β -strands connected by large loops, packed orthogonally into a β -sandwich.	7	[40,45,61,80,81]
nfeAFP11	Zoarces elongatus Kner (fish)	Recombinant	Globular β -strands connected by large loops, packed orthogonally into a β -sandwich.	7	[73]
DAFP	Dendroides canadensis (beetle)	•	Hydrophilic amino acids-rich 12- or 13- mer repeats	7.3 to 16.2	[39]
ApAFP914	Anatolica polita (beetle)		Parallel β-helix with six repetitive 12- amino acid loops, containing repeats of Thr-Cys-Thr	20	[75]
AFGP 8	not available	In vitro	Ala–Ala–Thr repeats with a disaccharide attached to the Thr-OH group.	2.7	[66,74]

19

AFPs in small ruminants sperm cryopreservation

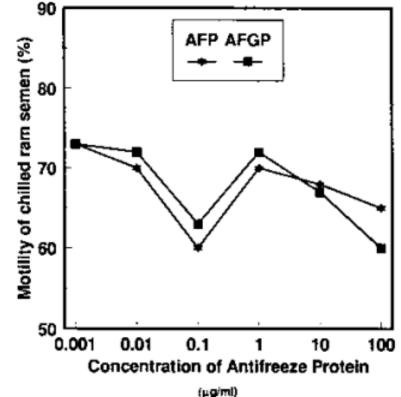
Cryobiology. 1994 Apr;31(2):180-4. doi: 10.1006/cryo.1994.1021.

Effect of antifreeze proteins on the motility of ram spermatozoa

S R Payne ¹, J E Oliver, G C Upreti

TABLE 1 Effect of AFP and AFGP on the Motility^a of Ram Spermatozoa after Cooling and after Freezing and Thawing

	Sper	matozoal motility	y (%) ^b
Treatment (µg/ml)	Prefreeze (cooling)	Freeze-thaw	Difference
0	68	36	- 32
AFP			_
0.1	54	40	- 14
1	51	31	- 20
10	68	50	- 18
AFGP			
0.1	43	28	- 15
1	57	38	- 19
10	60	43	- 17


^a Motility scores of 4 were obtained for all treatments.

^b The data are the average of nine independent determinations.

 c SED = standard error for the differences between means.

Effect of antifreeze proteins on the motility of ram spermatozoa

S R Payne ¹, J E Oliver, G C Upreti

Antifreeze proteins slightly but significantly reduce the loss in ram spermatozoa motility during the freeze-thaw process, suggesting that these proteins could be used to help protect spermatozoa from damage during freeze-thawing, particularly with the low concentrations required.

FIG. 1. Effect of various concentrations of AFP and AFGP on the motility of pooled ram spermatozoa cooled to hypothermic temperatures (5°C) for 3 h. (Control spermatozoal motility = 68%, SE = 3.7; the data are the average of three independent determinations on pooled semen samples from three rams)

Enzyme leakage during cryopreservation of ram spermatozoa

Animal Reproduction Science 41 (1996) 27-36

G.C. Upreti^{a,*}, S.R. Payne^b, D.M. Duganzich^a, J.E. Oliver^a, J.F. Smith^a

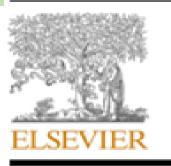
^a AgResearch, Dairy and Beef Division, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand ^b Meat Industry Research Institute of New Zealand (Inc.), P.O. Box 617. Hamilton. New Zealand

Table 2

Effect of antifreeze proteins (AFP) on spermatozoal motility and levels of alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) leaked in the supernatant

Stage of process ^a	% M	otile		۸LP ^b	(Ul ⁻¹)		LDH	[▶] (Ul ⁻¹)	
	0 °	10 °	SED ^d	0 °	10 °	SED ^d	0 °	10 °	SED ^d
Fresh	89	89	1.7	175	221	20	211	321	144
Chilled	86	86	1.4	186	195	30	388	242	107
Freeze-thaw	37	42	2.3	204	209	8	166	170	17
6 h post-thaw	13	22	3.6	10	11	1	86	122	16
24 h post-thaw	5	13	2.1	3	2	1	284	374	52

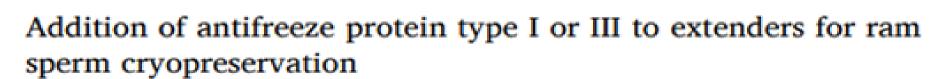
^a Activity was measured in supernatant (2000 \times g for 10 min).


^b Activities in Ul⁻¹ from a spermatozoal suspension of 400×10^6 sperm ml⁻¹.

^c Levels of AFP in μ g ml⁻¹.

^d SED, standard error of the difference of the means of 15 replicates = three ejaculates from each of five rams.

The presence of antifreeze protein did not influence ALP leakage, whereas LDH leakage increased during prolonged post-thaw incubations. ANIMAL


REPRODUCTION SCIENCE Cryobiology 98 (2021) 194-200

Contents lists available at ScienceDirect

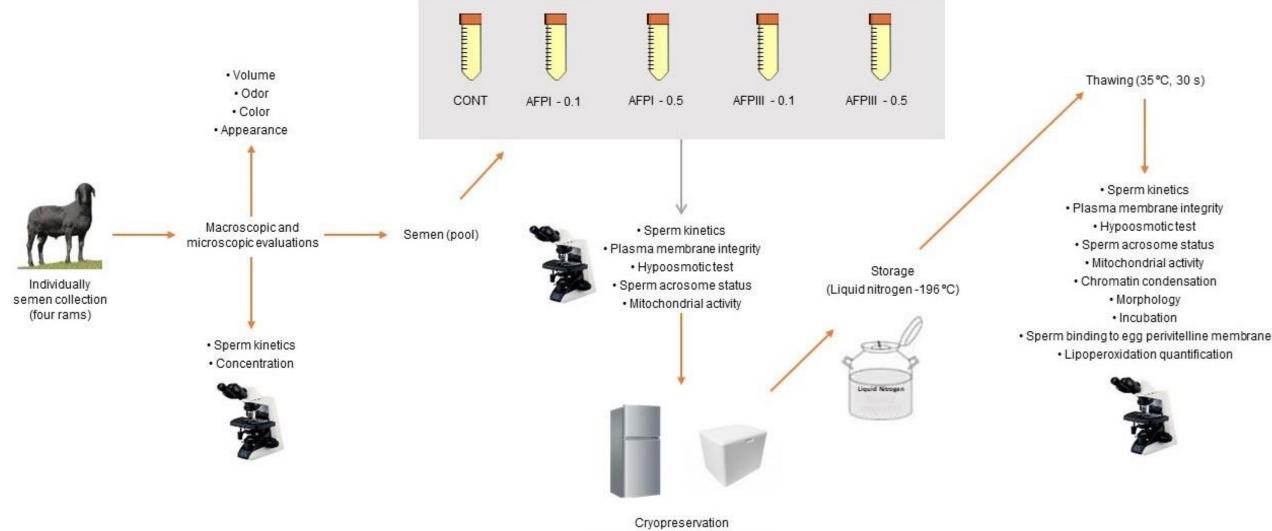
Cryobiology

journal homepage: http://www.elsevier.com/locate/cryo

Lucas Francisco L. Correia ^{a, **}, Caroline G. Espírito-Santo ^a, Rachel F. Braga ^a, Cleber J. Carvalho-de-Paula ^a, Andreza A. da Silva ^b, Felipe Z. Brandão ^a, Vicente J.F. Freitas ^c, Rodolfo Ungerfeld ^d, Joanna M.G. Souza-Fabjan ^{a, *}

* Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brazil Filho, 64, CEP 24230-340, Niterói, RJ, Brazil

^b Faculdade de Medicina Veterinária, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, Km 07, Seropédica, RJ, 23890-000, Brazil


^c Laboratório de Fisiologia e Controle da Reprodução, Universidade Estadual do Ceará, Fortaleza, CE, Brazil

^d Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Lasplaces 1620, Montevideo, 11600, Uruguay

CRYOBIOLOG

Experimental design

(cooling and liquid nitrogen vapor)

Table 1. Sperm parameters evaluated after dilution before freezing and immediately after (0 h) frozen-thawed ram semen subjected to extender containing different types and concentrations of antifreeze proteins (AFP) for cryopreservation (Mean + SEM).

			Before Freezing			Immediately (0 h) after frozen-thawed			
		0 µg/mL	0.1 µg/mL	0.5 µg/mL	0 μg/mL	0.1 µg/mL	0.5 µg/mL		
Total Matility (%)	AFP I	96.0 ± 3.0 Aa	97.0 ± 1.6 Aa	94.2 ± 4.5 Aa	30.0 ± 2.1 Aa	27.6 ± 4.8 Aa	26.2 ± 2.0 Aa		
Total Motility (%)	AFP III	96.0 ± 3.0 ^{Aa}	93.9 ± 3.0 ^{Aa}	95.3 ± 2.6 ^{Aa}	30.0 ± 2.1 ^{Aa}	13.7 ± 1.4 Ab	25.0 ± 2.3 ^{Aa}		
Dragrassive Matility (%)	AFP I	25.2 ± 4.0 ^{Aa}	31.3 ± 6.4 Aa	28.5 ± 6.2 ^{Aa}	1.6 ± 0.3 Aa	2.5 ± 0.2 ^{Aa}	2.7 ± 0.6 ^{Aa}		
Progressive Motility (%)	AFP III	25.2 ± 4.0 Aa	30.0 ± 4.8 ^{Aa}	25.4 ± 4.8 ^{Aa}	1.6 ± 0.3 ^{Aa}	2.1 ± 0.5 ^{Aa}	2.4 ± 0.4 ^{Aa}		
Foot Sparry (9()	AFP I	64.8 ± 4.8 ^{Aa}	67.3 ± 1.8 ^{Aa}	60.3 ± 4.4 ^{Aa}	4.8 ± 1.1 ^{Aa}	5.3 ± 1.3 ^{Aa}	5.5 ± 1.9 ^{Aa}		
Fast Sperm (%)	AFP III	64.8 ± 4.8 ^{Aa}	59.6 ± 7.1 ^{Aa}	55.3 ± 10.0 Aa	4.8 ± 1.1 ^{Aa}	1.5 ± 0.6 ^{Aa}	2.5 ± 1.1 Aa		
Madium Snarm (9)	AFP I	22.2 ± 4.2 Aa	21.8 ± 4.1 ^{Aa}	24.9 ± 6.1 Aa	1.6 ± 0.2 Aa	2.1 ± 0.4 Aa	2.5 ± 0.8 Aa		
Medium Sperm (%)	AFP III	22.2 ± 4.2 Aa	24.7 ± 7.5 ^{Aa}	24.1 ± 7.5 Aa	1.6 ± 0.2 Aa	1.6 ± 0.3 Aa	2.4 ± 0.5 ^{Aa}		
Class Calence (0/)	AFP I	10.3 ± 2.6 Aa	9.0 ± 1.9 ^{Aa}	11.9 ± 2.5 ^{Aa}	24.1 ± 1.1 Aa	15.6 ± 1.4 Ab	18.6 ± 3.1 Aa		
Slow Sperm (%)	AFP III	10.3 ± 2.6 Aa	12.7 ± 2.2 Aa	11.7 ± 2.5 Aa	24.1 ± 1.1 Aa	8.8 ± 0.6 ^{Ab}	17.3 ± 1.3 Ac		
	AFP I	89.0 ± 8.2 ^{Aa}	95.5 ± 5.6 ^{Aa}	86.3 ± 8.3 ^{Aa}	36.2 ± 3.8 Aa	44.2 ± 3.9 Aa	41.2 ± 9.4 ^{Aa}		
VCL (µm/s)	AFP III	89.0 ± 8.2 ^{Aa}	87.2 ± 6.4 ^{Aa}	87.0 ± 12.6 Aa	36.2 ± 3.8 Aa	42.9 ± 6.1 Aa	37.0 ± 6.0 Aa		
VSL (um/a)	AFP I	43.5 ± 7.8 Aa	49.3 ± 9.4 ^{Aa}	45.0 ± 10.6 Aa	14.5 ± 2.1 Aa	22.3 ± 3.2 Aa	15.1 ± 5.2 Aa		
VSL (µm/s)	AFP III	43.5 ± 7.8 Aa	44.6 ± 7.2 ^{Aa}	40.9 ± 7.7 ^{Aa}	14.5 ± 2.1 Aa	17.0 ± 3.1 Aa	15.0 ± 2.8 ^{Aa}		
VAD (um/a)	AFP I	63.8 ± 8.4 ^{Aa}	63.5 ± 7.4 ^{Aa}	55.1 ± 7.2 ^{Aa}	21.4 ± 2.0 ^{Aa}	34.3 ± 2.3 Aa	23.7 ± 6.4 ^{Aa}		
VAP (µm/s)	AFP III	63.8 ± 8.4 ^{Aa}	65.2 ± 7.9 ^{Aa}	54.4 ± 8.8 ^{Aa}	214+20 ^{Aa}	27 1 + 4 1 ^{Aa}	28.6 + 4.2 Aa		
	AFP I	47.1 ± 5.2 Aa	50.1 ± 6.7 ^{Aa}	49.1 ± 6.8 ^{Aa}	36.8 ± 3.0 Aa	56.6 ± 3.1 Ab	56.9 ± 2.2 Ab		
LIN (%)	AFP III	47.1 ± 5.2 Aa	49.6 ± 4.7 ^{Aa}	46.2 ± 4.8 ^{Aa}	36.8 ± 3.0 Aa	53.3 ± 2.1 ^{Aab}	64.7 ± 6.2 Ab		
STD (%)	AFP I	66.0 ± 3.6 ^{Aa}	67.8 ± 4.7 ^{Aa}	67.2 ± 4.9 ^{Aa}	63.2 ± 0.8 Aa	75.4 ± 0.9 Ab	78.5 ± 2.8 Ab		
STR (%)	AFP III	66.0 ± 3.6 ^{Aa}	66.7 ± 3.0 ^{Aa}	64.7 ± 2.8 ^{Aa}	63.2 ± 0.8 Aa	81.9 ± 3.2 Ab	78.4 ± 4.1 Ab		
MOR (%)	AFP I	70.3 ± 4.0 Aa	72.1 ± 5.0 ^{Aa}	71.4 ± 4.6 ^{Aa}	69.4 ± 7.2 Å	68.7 ± 4.5 Å	72.8 ± 4.2 Å		
WOB (%)	AFP III	70.3 ± 4.0 Aa	73.5 ± 3.8 ^{Aa}	70.6 ± 4.7 ^{Aa}	69.4 ± 7.2 ^{Aa}	65.8 ± 4.2 Aa	69.8 ± 6.4 ^{Aa}		
	AFP I	3.0 ± 0.2 Aa	3.0 ± 0.2 Aa	2.7 ± 0.2 Aa	1.9 ± 0.3 ^{Aa}	2.1 ± 0.4 Aa	1.6 ± 0.2 ^{Aa}		
ALH (µm)	AFP III	3.0 ± 0.2 ^{Aa}	2.8 ± 0.2 Aa	2.8 ± 0.3 Aa	1.9 ± 0.3 ^{Aa}	1.6 ± 0.3 Aa	2.1 ± 0.4 ^{Aa}		
	AFP I	7.0 ± 0.6 ^{Aa}	7.4 ± 0.3 Aa	6.7 ± 0.4 Aa	5.2 ± 0.7 ^{Aa}	7.1 ± 1.2 Aa	6.9 ± 1.5 ^{Aa}		
BCF (Hz)	AFP III	7.0 ± 0.6 Aa	7.7 ± 0.5 ^{Aa}	7.4 ± 0.4 ^{Aa}	5.2 ± 0.7 ^{Aa}	4.9 ± 0.6 Aa	7.1 ± 1.4 Aa		

Table 1. Sperm parameters evaluated after dilution before freezing and immediately after (0 h) frozen-thawed ram semen subjected to extender containing different types and concentrations of antifreeze proteins (AFP) for cryopreservation (Mean + SEM).

			Before Freezing		Immediatel	y (0 h) after frozen	-thawed
DM Integrity (%)	AFP I	63.9 ± 7.6 ^{Aa}	70.2 ± 5.7 Aa	71.8 ± 7.2 Aa	13.0 ± 4.4 ^{Aa}	49.1 ± 4.6 Ab	36.6 ± 7.3 Ab
PM Integrity (%)	AFP III	63.9 ± 7.6 ^{Aa}	58.9 ± 3.2 ^{Aa}	58.2 ± 1.4 Aa	13.0 ± 4.4 Aa	19.8 ± 3.6 ^{Ba}	21.8 ± 4.0 Aa
Hypecometic (%)	AFP I	85.3 ± 1.4 ^{Aa}	86.3 ± 1.7 ^{Aa}	79.6 ± 2.1 ^{Aa}	13.6 ± 2.6 ^{Aa}	16.9 ± 4.2 Aa	22.2 ± 4.3 Aa
Hypoosmotic (%)	AFP III	85.3 ± 1.4 ^{Aa}	81.6 ± 4.6 ^{Aa}	87.4 ± 0.3 ^{Aa}	13.6 ± 2.6 Aa	15.7 ± 3.8 Aa	11.9 ± 1.8 ^{Aa}
LSIA (%)	AFP I	28.8 ± 4.4 ^{Aa}	33.1 ± 8.8 ^{Aa}	27.8 ± 4.8 ^{Aa}	16.4 ± 6.2 ^{Aa}	13.8 ± 6.8 Aa	11.7 ± 6.1 ^{Aa}
LSIA (10)	AFP III	28.8 ± 4.4 ^{Aa}	32.5 ± 5.6 ^{Aa}	28.1 ± 4.8 ^{Aa}	16.4 ± 6.2 Aa	7.0 ± 2.1 ^{Aa}	8.5 ± 1.4 Aa
	AFP I	65.8 ± 2.4 ^{Aa}	57.8 ± 8.0 ^{Aa}	56.4 ± 6.4 ^{Aa}	8.3 ± 2.2 ^{Aa}	10.7 ± 5.0 Aa	10.6 ± 5.5 ^{Aa}
LSAR (%)	AFP III	65.8 ± 2.4 Aa	56.8 ± 5.1 Aa	57.3 ± 8.1 Aa	8.3 ± 2.2 Aa	8.7 ± 2.8 Aa	10.0 ± 1.3 Aa
	AFP I	3.8 ± 0.4 Aa	3.8 ± 0.7 Aa	4.4 ± 1.5 Aa	59.3 ± 14.1 Aa	59.0 ± 17.5 ^{Aa}	64.2 ± 14.1 Aa
DSIA (%)	AFP III	3.8 ± 0.4 Aa	6.7 ± 1.9 Aa	2.5 ± 1.1 Aa	59.3 ± 14.1 Aa	67.8 ± 11.0 Aa	61.6 ± 10.7 Aa
DEAL (%)	AFP I	6.1 ± 1.1 Aa	6.1 ± 0.9 ^{Aa}	3.4 ± 1.0 Aa	3.9 ± 2.1 Aa	11.3 ± 5.7 Aa	7.4 ± 3.4 Aa
DSAL (%)	AFP III	6.1 ± 1.1 Aa	4.2 ± 0.8 Aa	4.7 ± 0.7 ^{Aa}	3.9 ± 2.1 Aa	7.2 ± 5.2 Aa	8.8 ± 3.4 ^{Aa}
DAB L/%)	AFP I	95.5 ± 0.9 ^{Aa}	94.2 ± 1.2 Aa	95.2 ± 0.8 Aa	10.3 ± 2.2 Aa	12.5 ± 3.0 Aa	16.7 ± 2.5 Aa
DAB I (%)	AFP III	95.5 ± 0.9 Aa	95.3 ± 1.1 Aa	94.7 ± 1.0 Aa	10.3 ± 2.2 Aa	12.6 ± 0.7 Aa	10.3 ± 1.7 Aa
DAB II (%)	AFP I	0.7 ± 0.3 ^{Aa}	0.9 ± 0.2 ^{Aa}	0.8 ± 0.1 ^{Aa}	9.4 ± 4.5 ^{Aa}	13.3 ± 5.3 Aa	11.8 ± 5.5 Aa
DAD II (78)	AFP III	0.7 ± 0.3 Aa	1.0 ± 0.3 Aa	0.7 ± 0.2 ^{Aa}	9.4 ± 4.5 ^{Aa}	8.8 ± 2.3 Aa	8.0 ± 2.6 ^{Aa}
DAB III (%)	AFP I	0.8 ± 0.3 Aa	0.8 ± 0.3 Aa	1.1 ± 0.3 Aa	1.6 ± 0.3 Aa	2.0 ± 1.0 Aa	1.5 ± 0.4 Aa
DAD III (%)	AFP III	0.8 ± 0.3 Aa	1.0 ± 0.5 ^{Aa}	0.6 ± 0.3 Aa	1.6 ± 0.3 Aa	1.5 ± 0.3 Aa	1.9 ± 0.6 Aa
DAB IV (%)	AFP I	3.0 ± 0.6 Aa	4.1 ± 1.2 Aa	2.9 ± 0.6 Aa	80.0 ± 5.7 Aa	69.6 ± 7.6 Aa	71.9 ± 6.0 Aa
	AFP III	3.0 ± 0.6 ^{Aa}	2.7 ± 0.6 ^{Aa}	4.0 ± 0.6 ^{Aa}	80.0 ± 5.7 ^{Aa}	74.3 ± 5.3 ^{Aa}	83.3 ± 3.0 Aa
Normal Chrom (%)	AFP I	-	-	-	99.0 ± 0.3 ^{Aa}	98.9 ± 0.4 ^{Aa}	98.5 ± 0.5 ^{Aa}
Normal Chrom. (%)	AFP III	-	-	-	99.0 + 0.3 ^{Aa}	98.8 + 0.3 Aa	98 8 + 0 3 ^{Aa}
Normal Morphol. (%)	AFP I	-	-	-	65.3 ± 1.9 Aa	73.0 ± 1.0 Ab	75.7 ± 2.2 ^{Ab}
Normal Morphol. (%)	AFP III	-	-	-	65.3 ± 1.9 Aa	73.8 ± 1.6 ^{Ab}	74.8 ± 0.5 Ab
Sperm binding (mm ²)	AFP I	-	-	-	186.7 ± 47.2 Aa	178.3 ± 31.8 Aa	175.0 ± 49.3 Aa
openn binding (min)	AFP III	-	-	-	186.7 ± 47.2 Aa	238.3 ± 49.6 Aa	191.6 ± 44.6 Aa
TBARS (ng/mL)	AFP I	-	-	-	567.2 ± 20.0 Aa	545.8 ± 29.3 Aa	559.9 ± 18.3 Aa
TEARO (IIgIIIE)	AFP III	-	-	-	567.2 ± 20.0 ^{Aa}	544.0 ± 15.6 ^{Aa}	566.6 ± 19.2 Aa

Cryobiology 98 (2021) 194-200

CRYOBIOLOG

Contents lists available at ScienceDirect

Cryobiology

journal homepage: http://www.elsevier.com/locate/cryo

Addition of antifreeze protein type I or III to extenders for ram sperm cryopreservation

Lucas Francisco L. Correia ^{a, **}, Caroline G. Espírito-Santo ^a, Rachel F. Braga ^a, Cleber J. Carvalho-de-Paula ^a, Andreza A. da Silva ^b, Felipe Z. Brandão ^a, Vicente J.F. Freitas ^c, Rodolfo Ungerfeld ^d, Joanna M.G. Souza-Fabjan ^{a,*}

* Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brazil Filho, 64, CEP 24230-340, Niterói, RJ, Brazil

Facuidade de Medicina Veterinária, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, Km 07, Seropédica, RJ, 23890-000, Brazil

^c Laboratório de Fisiología e Controle da Reprodução, Universidade Estadual do Ceará, Fortaleza, CE, Brazil ^d Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Lasplaces 1620, Montevideo, 11600, Uruguay

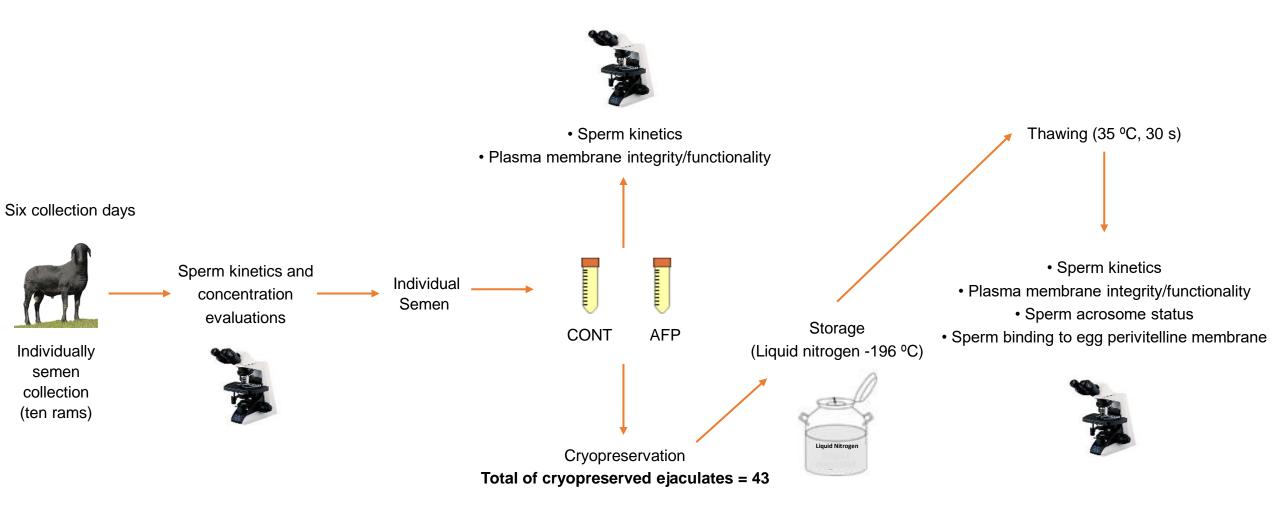
In conclusion, the addition of AFP appears auspicious for cryopreserving ram sperm cells. The use of AFP, predominantly type I, increased sperm cell protection during cryopreservation, resulting in greater sperm kinetics, better plasma integrity and greater percentage of normal sperm cells. These results open interesting possibilities to use AFP as a sheep semen cryoprotectant.

To be published

ROLE OF ANTIFREEZE PROTEIN TYPE I ON RAM SEMEN FREEZABILITY

L.F.L. Correia^{1*}, V.L. Brair¹, R.F. Braga¹, A.R. Taira¹, B.R.C. Alves¹, F.Z. Brandão¹, R. Ungerfeld², R.I.T.P. Batista¹, J.M.G. Souza-Fabjan^{1*}

¹Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brazil Filho, 64, CEP 24230-340, Niterói, RJ, Brazil


²Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la

República, Ruta 8 km 18, Montevideo 13000, Uruguay

*corresponding authors: lucascorreia@id.uff.br (L.F.L. Correia); joannavet@gmail.com

(J.M.G. Souza-Fabjan)

Experimental design

Results

Table 1. Principal components analysis: eigenvalues, variances (%), accumulated

variances, and eigenvectors identified in the Principal Components 1 to 4 (PC1 to PC4)

evaluated in data obtained from frozen-thawed ram semen.

	PC1	PC2	PC3	PC4
Eigenvalue	7.05	4.20	1.83	1.02
Variance (%)	44.05	26.27	11.45	6.37
Accumulated Variance (%)	44.05	70.32	81.77	88.14
Eigenvector				
Total Motility	0.85	-0.04	-0.51	0.03
Progressive Motility	0.89	0.14	0.19	-0.24
Fast Sperm	0.83	-0.08	0.25	-0.34
Medium Sperm	0.92	-0.19	-0.05	-0.09
Slow Sperm	0.78	-0.00	-0.60	0.07
VCL	0.81	-0.26	0.41	-0.06
VSL	0.52	0.80	0.24	-0.02
VAP	0.77	0.52	0.30	0.01
LIN	-0.02	0.99	-0.05	0.03
STR	-0.01	0.99	-0.02	0.00
WOB	0.04	0.97	-0.10	0.08
ALH	0.50	-0.13	-0.40	0.12
BCF	0.77	-0.24	0.40	-0.06
PM Integrity	0.35	0.06	0.26	0.80
Hypoosmotic	0.51	-0.41	0.27	0.40

Abbreviations: VCL: curvilinear velocity; VSL: straight-line velocity; VAP: average path velocity; LIN: linearity; STR: straightness; WOB: wobble; ALH: amplitude of lateral head displacement; BCF: beat/cross frequency; PM Integrity: plasma membrane integrity.

Table 2. Pre-freezing ram spermatozoa parameters from ejaculates of poor (PF) or good freezability (GF) patterns in extenders without (CONT) or with 0.1 µg/mL AFP type I

						Effects	
Variables	PF - CONT	PF - AFP	GF - CONT	GF- AFP	AFP	Freezability	AFP x Freezability
Total Motility (%)	94.7 ± 1.6	95.8 ± 1.6	99.5 ± 2.6	98.0 ± 2.6	n.s.	n.s.	n.s.
Progressive Motility (%)	15.3 ± 1.4	12.8 ± 1.4	14.5 ± 2.4	14.5 ± 2.4	n.s.	n.s.	n.s.
Fast Sperm (%)	27.0 ± 5.3	24.8 ± 5.3	32.3 ± 9.1	29.9 ± 9.1	n.s.	n.s.	n.s.
Medium Sperm (%)	29.6 ± 2.4	29.7 ± 2.4	37.1 ± 4.2	32.0 ± 4.2	n.s.	n.s.	n.s.
Slow Sperm (%)	38.1 ± 5.1	39.9 ± 5.1	30.2 ± 8.8	36.2 ± 8.8	n.s.	n.s.	n.s.
VCL (µm/s)	56.5 ± 4.3	56.7 ± 4.3	65.3 ± 7.3	61.4 ± 7.3	n.s.	n.s.	n.s.
VSL (µm/s)	24.0 ± 1.3	21.8 ± 1.3	23.7 ± 2.2	23.0 ± 2.2	n.s.	n.s.	n.s.
VAP (µm/s)	37.4 ± 2.4	35.0 ± 2.4	39.5 ± 4.1	37.6 ± 4.1	n.s.	n.s.	n.s.
LIN (%)	44.0 ± 1.7ª	40.6 ± 1.7 ^b	37.8 ± 2.9	39.8 ± 2.9	n.s.	n.s.	0.027
STR (%)	66.2 ± 1.4ª	63.7 ± 1.4 ^b	61.4 ± 2.4	62.9 ± 2.4	n.s.	n.s.	0.031
WOB (%)	65.7 ± 1.3ª	62.9 ± 1.3 ^b	61.2 ± 2.2	62.8 ± 2.2	n.s.	n.s.	0.024
ALH (µm)	3.7 ± 0.2ª	4.0 ± 0.2 ^b	4.2 ± 0.4	3.9 ± 0.4	n.s.	n.s.	0.014
BCF (Hz)	5.3 ± 0.5	5.4 ± 0.5	5.5 ± 0.9	5.5 ± 0.9	n.s.	n.s.	n.s.
PM Integrity (%)	68.6 ± 2.1	68.8 ± 2.1	70.9 ± 3.6	71.0 ± 3.6	n.s.	n.s.	n.s.
Hypoosmotic (%)	82.0 ± 1.9	83.3 ± 1.9	80.5 ± 3.3	82.4 ± 3.3	n.s.	n.s.	n.s.

Abbreviations: VCL: curvilinear velocity; VSL: straight-line velocity; VAP: average path velocity; LIN: linearity; STR: straightness; WOB: wobble; ALH: amplitude of lateral head displacement; BCF: beat/cross frequency; PM Integrity: Plasma Membrane integrity. n.s.: non-significant; ^{a,b} represents the differences of interaction within the same freezability category (P<0.01). Data is presented as LSMean ± SEM.

Table 3. Post-thawing ram spermatozoa parameters from ejaculates of poor (PF) or good freezability (GF) patterns in extenders without (CONT) or with 0.1 µg/mL AFP type I (AFP)

				_		Effects	
							AFP x
Variable	PF - CONT	PF - AFP	GF - CONT	GF- AFP	AFP	Freezability	Freezability
Total Motility (%)	18.2 ± 2.2	25.3 ± 2.2	49.4 ± 3.8	48.1 ± 3.8	n.s.	0.001	0.100
Progressive Motility (%)	0.6 ± 0.3	0.9 ± 0.3	2.2 ± 0.5	3.3 ± 0.5	0.053	0.001	n.s.
Fast Sperm (%)	0.3 ± 0.2	0.4 ± 0.2	1.0 ± 0.3	1.6 ± 0.3	0.048	0.002	n.s.
Medium Sperm (%)	1.1 ± 0.7	2.0 ± 0.7	4.9 ± 1.1	6.6 ± 1.1	0.100	0.001	n.s.
Slow Sperm (%)	16.7 ± 1.7ªA	22.8 ± 1.7 ^{bB}	43.5 ± 2.9 ^A	39.9 ± 2.9 ^B	n.s.	0.001	0.014
VCL (µm/s)	22.0 ± 0.8	22.0 ± 0.8	25.1 ± 1.4	26.8 ± 1.4	n.s.	0.008	n.s.
VSL (µm/s)	9.3 ± 0.6	9.9 ± 0.6	11.3 ± 1.0	11.9 ± 1.0	n.s.	0.032	n.s.
VAP (µm/s)	13.6 ± 0.6	14.4 ± 0.6	16.5 ± 1.0	17.5 ± 1.0	n.s.	0.004	n.s.
LIN (%)	42.8 ± 2.2	45.4 ± 2.2	45.7 ± 3.8	44.7 ± 3.8	n.s.	n.s.	n.s.
STR (%)	66.7 ± 1.7	68.0 ± 1.7	68.5 ± 2.9	67.6 ± 2.9	n.s.	n.s.	n.s.
WOB (%)	62.5 ± 1.8	65.5 ± 1.8	66.2 ± 3.0	65.3 ± 3.0	n.s.	n.s.	n.s.
ALH (µm)	1.6 ± 0.2	1.7 ± 0.2	2.8 ± 0.3	2.9 ± 0.3	n.s.	0.001	n.s.
BCF (Hz)	3.4 ± 0.6	3.2 ± 0.6	5.8 ± 1.0	5.4 ± 1.0	n.s.	0.039	n.s.
PM Integrity (%)	26.4 ± 2.3	31.5 ± 2.3	27.3 ± 4.0	38.3 ± 4.0	0.001	n.s.	n.s.
Hypoosmotic (%)	15.1 ± 2.0	16.3 ± 2.0	20.4 ± 3.4	16.3 ± 3.4	n.s.	n.s.	n.s.
Capacitated (%)	16.5 ± 3.0	18.3 ± 3.0	26.0 ± 5.4	19.3 ± 5.4	n.s.	n.s.	n.s.
Non-capacitated (%)	8.2 ± 2.0	5.3 ± 2.0	4.6 ± 3.6	6.5 ± 3.6	n.s.	n.s.	n.s.
Acrosome-reacted (%)	75.4 ± 3.4	76.4 ± 3.4	69.4 ± 6.1	74.3 ± 6.1	n.s.	n.s.	n.s.
Sperm binding (mm ²)	484.6 ± 145.3	624.6 ± 145.3	1054.0 ± 234.3	1574.0 ± 234.3	0.005	0.005	0.094

Abbreviations: VCL: curvilinear velocity; VSL: straight-line velocity; VAP: average path velocity; LIN: linearity; STR: straightness; WOB: wobble; ALH: amplitude of lateral head displacement; BCF: beat/cross frequency; PM Integrity: plasma membrane integrity; Sperm binding: sperm binding to egg perivitelline membrane; n.s.: non-significant.^{a,b} represents the differences of interaction within the same freezability category; ^{A,B} represents the differences of interaction within the same freezability.

Results

When samples treated with AFP were subjected to classification according to the developed freezability model, considering PCA and K-means clusters, it was detected that AFP treatment did not alter semen freezability (p = 0.132).

It was observed that **eight (25.0%) ejaculates of BF in the CONT extender were reclassified as GF** in the AFP extender.

Conversely, three (27.3%) ejaculates of GF in the CONT extender were reclassified as BF in the AFP extender.

56.9 91.5 GF GF 54.1 51.3 GF GF 59.5 GF 53.6 GF GF 50.2 41.6 GF GF 48.4 57.4 GF 58.0 GF 47.9 GF GF 45.6 45.8 GF GF 41.2 51.0 GF GF 64.3 25.8 BF GF 26.0 44.7 BF GF 35.9 21.1 BF BF 32.4 45.0 GF 42.0 BF 27.3 GF BF 24.0 62.8 GF 62.9 BF 23.4 GF 38.0 BF 23.2 GF category B B B B B B F B F B 33.5 15.8 GF 38.5 14.5 GF 38.4 13.5 GF 32.7 32.0 BF BF 28.2 32.0 BF ezability BF 24.7 31.6 BF BF 23.5 18.7 BF 18.8 BF 21.9 BF BF 14.2 19.2 BF Fre BF 22.4 18.7 BF BF 17.6 32.4 BF 18.5 BF 17.0 BF 24.2 BF 16.8 BF 7.3 BF 16.2 BF 11.0 BF 16.0 BF 28.4 BF 15.2 BF 10.9 BF 14.2 BF 27.5 BF 13.0 BF 16.1 BF 12.6 BF 12.4 BF 12.4 BF 13.6 BF BF 12.4 BF 11.6 18.4 BF BF 10.7 11.6 BF 30.0 BF 11.5 BF 12.3 BF 10.9 BF 9.4 BF 10.2 BF 6.5 9.0 BF BF CONT **AFP0.1**

Treatment

100

90

80

70

60

50

40

30

20

10

Total Motility (%)

Wilcoxon signed-rank tests

ROLE OF ANTIFREEZE PROTEIN TYPE I ON RAM SEMEN FREEZABILITY

L.F.L. Correia^{1*}, V.L. Brair¹, R.F. Braga¹, A.R. Taira¹, B.R.C. Alves¹, F.Z. Brandão¹, R

Ungerfeld², R.I.T.P. Batista¹, J.M.G. Souza-Fabjan^{1*}

¹Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brazil Filho, 64, CEP 24230-340, Niterói, RJ, Brazil

²Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la

República, Ruta 8 km 18, Montevideo 13000, Uruguay

*corresponding authors: lucascorreia@id.uff.br (L.F.L. Correia); joannavet@gmail.com

(J.M.G. Souza-Fabjan)

The addition of 0.1 µg/mL of AFP I appears as having slightly different impacts in ram sperm with expected different freezability profiles. However, the addition of AFP I increased the percentage of sperm with fast velocity, sperm plasma membrane integrity, and sperm binding to the perivitelline membrane regardless of the freezability pattern of ejaculates in sheep. These results indicate that AFP is capable of mitigating some cryoinjuries independently of the cryoresistency pattern of the sperm samples.

GF GF	56.9 54.1	91.5 51.3	GF GF	
GF	53.6	59.5	GF	
GF	50.2	41.6	GF	
GF	48.4	57.4	GF	
GF	47.9	58.0	GF	
GF	45.6	45.8	GF	
GF	41.2	51.0	GF	
GF	64.3	25.8	BF	
GF	44.7	26.0	BF	
GF	35.9	21.1	BF	
BF	32.4	45.0	GF	
BF	27.3	42.0	GF	
BF	24.0	62.8	GF	
BF	23.4	62.9	GF	
BF	23.2	38.0	GF	
≥ BF	15.8	33.5	GF	
ရှိ BF	14.5	38.5	GF	
ě BF	13.5	38.4	GF	
BF	32.7	32.0	BF	
	32.0	28.2	BF	
reezability category 몇 몇 몇 몇 몇 몇 몇 몇 몇	31.6	24.7 18.7	BF	
I BF	23.5 21.9	18.8	BF	
BF BF	19.2	14.2	BF	
ө БГ 9 BF	18.7	22.4	BF BF	
сыг ШВF	17.6	32.4	BF	
BF	17.0	18.5	BF	
BF	16.8	24.2	BF	
BF	16.2	7.3	BF	
BF	16.0	11.0	BF	- 1
BF	15.2	28.4	BF	
BF	14.2	10.9	BF	
BF	13.0	27.5	BF	
BF	12.6	16.1	BF	
BF	12.4	12.4	BF	
BF	12.4	13.6	BF	
BF	11.6	18.4	BF	
BF	11.6	10.7	BF	
BF	11.5	30.0	BF	
BF	10.9	12.3	BF	
BF	10.2	9.4	BF	
BF	9.0	6.5	BF	
	CONT	AFP0.1		
	Treat	ment		

100

90

80

70

60

50

40

30

20

10

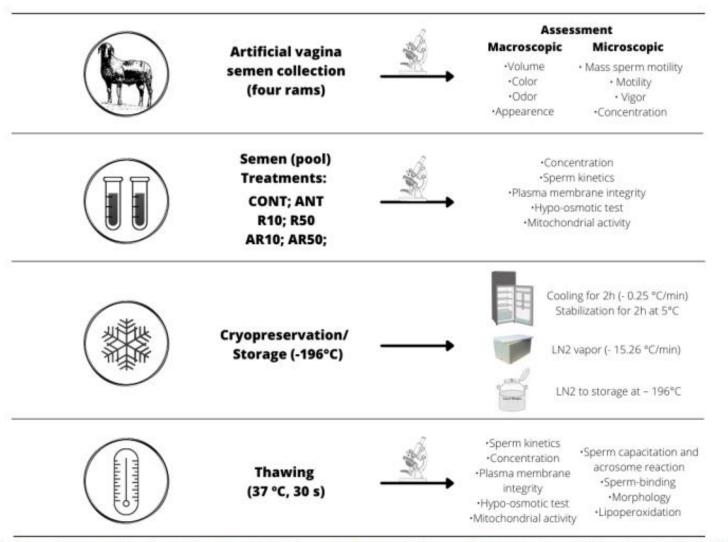
0

Total Motility (%)

The association of resveratrol and AFPI did not enhance the cryoresistance of ram sperm

Viviane Lopes Brair¹ ⁽ⁱ⁾, Lucas Francisco Leodido Correia¹ ⁽ⁱ⁾, Nathalia Oliveira Barbosa¹ ⁽ⁱ⁾, Rachel Ferreira Braga¹ ⁽ⁱ⁾, Augusto Ryonosuke Taira¹ ⁽ⁱ⁾, Andreza Amaral da Silva² ⁽ⁱ⁾, Felipe Zandonadi Brandão¹ ⁽ⁱ⁾, Rodolfo Ungerfeld³ ⁽ⁱ⁾, Joanna Maria Gonçalves Souza-Fabjan¹* ⁽ⁱ⁾

¹Faculdade de Veterinária, Universidade Federal Fluminense, Niterói, RJ, Brasil


²Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil

³Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay

How to cite: Brair VL, Correia LFL, Barbosa NO, Braga RF, Taira AR, Silva AA, Brandão FZ, Ungerfeld R, Souza-Fabjan JMG. The association of resveratrol and AFPI did not enhance the cryoresistance of ram sperm. Anim Reprod. 2024;21(1):e20230159. https://doi.org/10.1590/1984-3143-AR2023-0159

CC

Experimental design

Figure 1. Experimental design scheme: CONT) control containing only extender; ANT) added of AFPI; R10) 10 µM/mL resveratrol; R50) 50 µM/mL resveratrol; AR10) AFP I with 10 µM/mL resveratrol; AR50) AFP I with 50 µM/mL resveratrol. The concentration of AFP I was: 0.1 µg/mL.

Table 1. Ram sperm endpoints after dilution (before freezing) and immediately after thawing in extenders containing (+) or not (-) antifreeze protein (AFP) type I (0.1 µg/mL), associated or not with different concentrations of resveratrol (0, 10, or 50 µM/mL) during cryopreservation (LSmeans ± SEM).

	AFPI	Before	cryoprese	rvation	Fn	ozen-Thaw	ed	_	D 14		lunha	
	(µg/mL)	Resv	eratrol (µN	l/mL)	Resv	eratrol (µM	l/mL)			Pvalue		
Endpoints	0.1	0	10	50	0	10	50	AFPI	Resveratrol	Evaluation moment	AFP×Resveratrol ×Evaluation moment	
Total motility	-	99.0±4.0	99.4±4.0	98.3±4.0	25.3±3.8	33.9 ± 3.8		ns.	ns.	0.001	n.s.	
(%)	+	99.6±4.0	99.1±4.0	99.2±4.0	28.7 ± 3.8	24.0 ± 3.8	23.9±3.8	11.5.	115.	0.001	11.5.	
VCL (µm/s)	-	74.3±6.0	72.1±6.0	66.9±6.0	23.7 ± 6.0	24.1 ± 6.0		ns.		0.001	n.s.	
vcc(pmvs)	+	74.2±6.0	69.9 ± 6.0	69.4±6.0	24.8 ± 6.0	25.1 ± 6.0	21.8±6.4	n.s.	ns.	0.001	n.s.	
VEL (com/c)	-	30.4±2.5	27.1±2.5	25.1±2.5	15.5±2.5	15.1±2.5	13.2±2.5			0.001		
VSL (µm/s)	+	289±25	28.3±2.5	25.2±2.5	15.3±2.5	15.7±2.5	13.9±2.5	n.s.	ns.	0.001	n.s.	
VAP (µm/s)	-	46.2±3.7	42.7±3.7	39.7±3.7	18.8 ± 3.7	18.6 ± 3.7		ns.	n.s.	0.001	n.s.	
vice (pintos)	+	45.7±3.7	43.1±3.7	40.7±3.7	19.0 ± 3.7	19.5±3.7	17.2±3.7	11.5.				
LIN	-	37.8 ± 2.6	38.6±2.4	36.3±2.6	645±2.4	62.1±2.4	57.7±2.4	- ns.	ns.	0.001	n.s.	
(%)	+	38.7±2.4	40.6±2.4	37.1±2.4	60.5±2.4	62.3±2.4	61.0±2.4	11.3.	TIS.	0.001		
STR	-	62.8±1.9	64.1±1.8	62.2±1.9	81.6 ± 1.8	80.7 ± 1.8	77.8±1.8	ns.	ns.	0.001	n.s.	
(%)	+	63.2±1.8	65.4±1.8	62.7±1.8	79.5±1.8	80.3 ± 1.8	80.5±1.8	11.5.	TIS.	0.001	11.5.	
WOB	-	59.8±1.8	59.7 ± 1.7	58.4±1.8	78.9±1.7	76.8±1.7		- 00		0.001	26	
(%)	+	61.2±1.7	61.5±1.7	59.0 ± 1.7	75.8 ± 1.7	77.4±1.7	75.7±1.7	n.s.	ns.	0.001	n.s.	
ALH	-	3.3±0.3	3.5±0.3	3.4±0.3	2.9±0.3	3.4±0.3	3.3±0.3	ns.	ns.	0.001	ns.	
(µm)	+	4.0±0.3	3.3±0.3	3.8±0.3	2.7±0.3	2.7±0.3	2.7±0.3	11.5.	115.	0.001	11.5.	
BCF	-	7.7±0.9	7.6±0.9	7.5±0.9	2.3±1.0	1.9±1.0	1.7±1.0	ns.		0.001		
(Hz)	+	72±0.9	7.8±0.9	7.8±0.9	1.4±1.0	1.2±1.0	1.4±1.0	ILS.	ns.	0.001	n.s.	

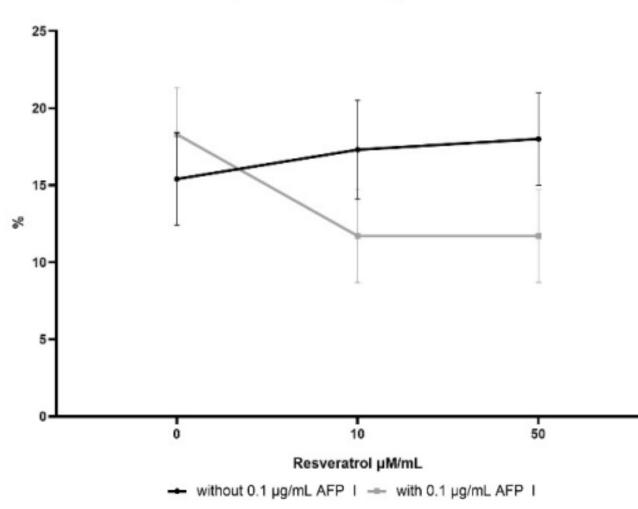
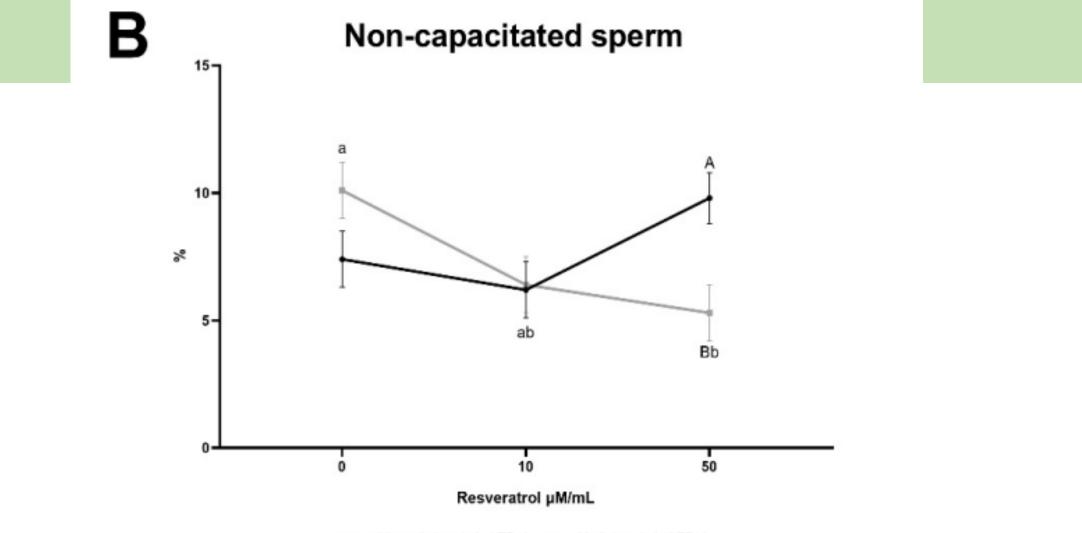

38

Table 1. Ram sperm endpoints after dilution (before freezing) and immediately after thawing in extenders containing (+) or not (-) antifreeze protein (AFP) type I (0.1 μg/mL), associated or not with different concentrations of resveratrol (0, 10, or 50 μM/mL) during cryopreservation (LSmeans ± SEM).


	AFP I (µg/mL)		Before cryopreservation Resveratrol (µM/mL)		Frozen-Thawed Resveratrol (µM/mL)		- Pvalue				
Endpoints	0.1	0	10	50	0	10	50	AFPI	Resveratrol	Evaluation moment	AFP×Resveratrol ×Evaluation moment
Plasma Membrane	-	81.1±23	81.1 ± 2.3	82.6±2.3	24.1±2.4	30.2±2.3	28.7±2.3		n.s. n.s.	0.001	n.s.
Integrity (%)	+	78.6±2.7	81.3±2.3	81.9±2.3	27.5±2.3	30.3±2.3	27.9±2.5				
Hypo-osmotic	-	90.7±2.1	92.9±2.1	92.3±2.1	19.7±2.1	24.9±2.1	22,4±2,1	0.06	ns.	0.001	n.s.
(%)	+	91.1±2.1	90.3±2.1	91.3±2.1	17.4±2.1	18.9±2.1	20.0 ± 2.1	0.06			
High MMP	-	69.5±3.5	69.5±3.5	69.6±4.2	23.6±3.8	29.4±3.5	23.3±3.8	0.07		0.001	
(%)	+	72.5±3.5	745±35	71.8±3.5	30.6±3.5	25.3±3.8	33.0±3.5	0.07	ns.	0.001	n.s.
Low MMP	-	19.5±3.8	20.5±3.5	20.0±3.8	35.0±3.5	35.9±3.5	40.5±3.8			0.004	
(%)	+	22.0±3.5	19.6±3.5	17.8±3.5	36.5±3.5	37.0±3.5	30.6±3.8	- n.s.	n.s.	0.001	n.s.
Inactive MMP	-	6.9±5.4	7.1±5.4	9.0±5.4	38.9±5.0	34.7±5.0	29.4±5.4			0.001	
(%)	+	64±5.4	9.4±5.0	10.3±5.0	32.9±5.0	34.6±5.0	32.4±5.0	n.s.	ns.	0.001	n.s.

Abbreviations: VCL: curvilinear velocity; VSL: straight-line velocity; VAP: average path velocity; LIN: linearity; STR: straightness; WOB: wobble; ALH: amplitude of lateral head displacement; BCF: beat/cross-frequency; MMP: mitochondrial membrane potential; n.s.: non-significant.

Capacitated sperm

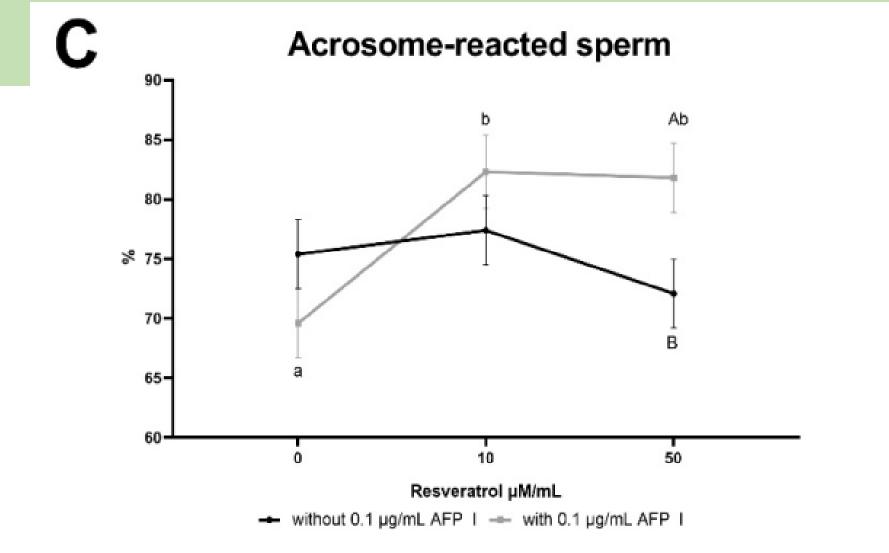
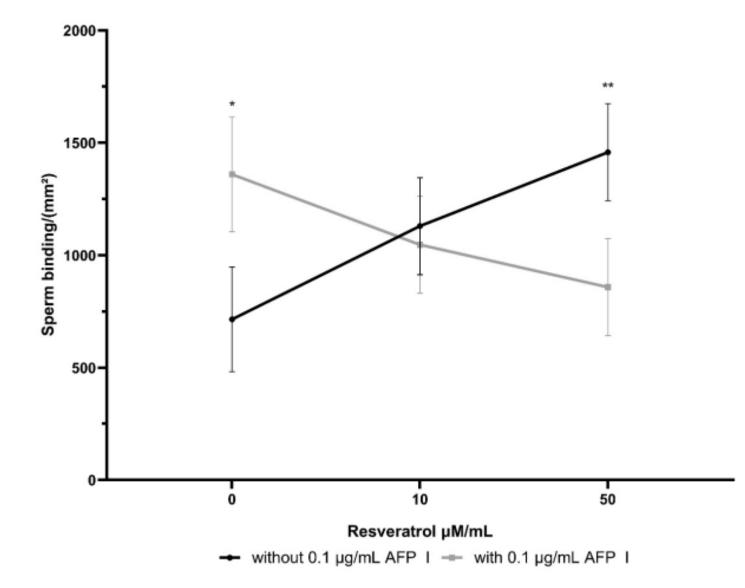


Figure 2. Interaction of (A) capacitated sperm, (B) non-capacitated sperm, and (C) acrossome-reacted sperm of frozen-thawed ram semen with or without the association of AFP I and different concentrations of resveratrol, immediately after thawing. Within a column or row, values with different superscripts differ significantly (P < 0.05). A,B differs between the absence or presence of AFP I (0.1 µg/mL). ^{a,b} differs among resveratrol concentrations (0, 10, or 50 µM/mL).

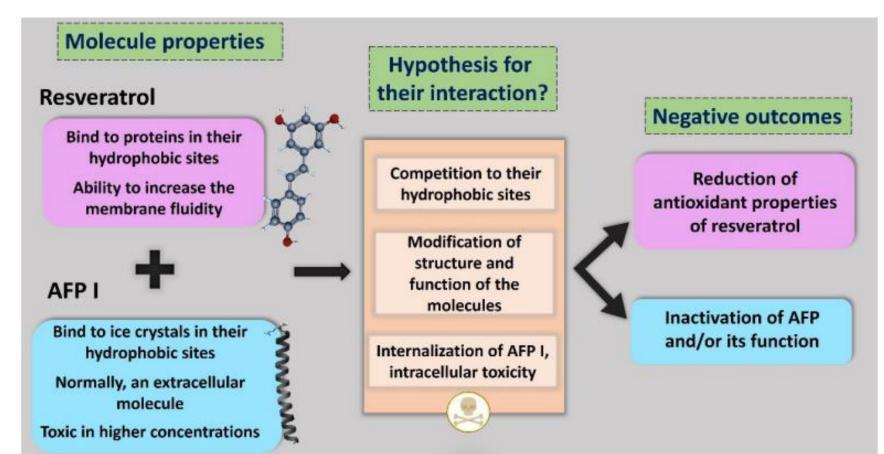


without 0.1 µg/mL AFP I --- with 0.1 µg/mL AFP I

Figure 2. Interaction of (A) capacitated sperm, (B) non-capacitated sperm, and (C) acrosome-reacted sperm of frozen-thawed ram semen with or without the association of AFP I and different concentrations of resveratrol, immediately after thawing. Within a column or row, values with different superscripts differ significantly (P < 0.05). A,B differs between the absence or presence of AFP I (0.1 µg/mL). ^{a,b} differs among resveratrol concentrations (0, 10, or 50 µM/mL).

Figure 2. Interaction of (A) capacitated sperm, (B) non-capacitated sperm, and (C) acrosome-reacted sperm of frozen-thawed ram semen with or without the association of AFP I and different concentrations of resveratrol, immediately after thawing. Within a column or row, values with different superscripts differ significantly (P < 0.05). A,B differs between the absence or presence of AFP I (0.1 µg/mL). ^{a,b} differs among resveratrol concentrations (0, 10, or 50 µM/mL).

Figure 3. Interaction between the association of AFP I and resveratrol concentrations in semen extender on frozen-thawed ram sperm bound to egg perivitelline membrane test, immediately after thawing. *represents the high probability (P = 0.071) of sperm bound in a single addiction of 0.1 µg/mL of AFP I in interaction analysis; **represents the high probability (P = 0.058) of sperm bound in a single addiction of 50 µM/mL of resveratrol in the interaction analysis.


Table 2. Normal morphology and lipid peroxidation assessed by thiobarbituric acid reactive substances (TBARS) levels of cryopreserved ram sperm in extenders containing (+) or not (-) antifreeze protein type I (0.1 μ g/mL), associated or not with different concentrations of resveratrol (0, 10 or 50 μ M/mL) during cryopreservation (LSmeans ± SEM).

Endnainte	AFP I (µg/mL)	Resveratrol (µM/mL)				P-va	lue
Endpoints	0.1	0	10	50	AFP I	Resveratrol	AFP×Resveratrol
	-	79.8 ± 2.1	77.8 ± 2.1	77.1 ± 2.3			
Normal Morphology (%)	+	81.7 ± 2.3	80.1 ± 2.6	79.5 ± 2.3	– n.s. n.s.	n.s.	n.s.
	-	477.2 ± 66.2	613.9 ± 60.5	534.7 ± 66.2	- 0.005		
TBARS (ng/mL)	+	568.2 ± 60.5	666.1 ± 60.5	664.6 ± 60.5	- 0.085	n.s.	n.s.

Abbreviations: n.s.: non-significant.

The association of resveratrol and AFPI did not enhance the cryoresistance of ram sperm

Viviane Lopes Brair¹ ⁽ⁱ⁾, Lucas Francisco Leodido Correia¹ ⁽ⁱ⁾, Nathalia Oliveira Barbosa¹ ⁽ⁱ⁾, Rachel Ferreira Braga¹ ⁽ⁱ⁾, Augusto Ryonosuke Taira¹ ⁽ⁱ⁾, Andreza Amaral da Silva² ⁽ⁱ⁾, Felipe Zandonadi Brandão¹ ⁽ⁱ⁾, Rodolfo Ungerfeld³ ⁽ⁱ⁾, Joanna Maria Gonçalves Souza-Fabjan¹* ⁽ⁱ⁾

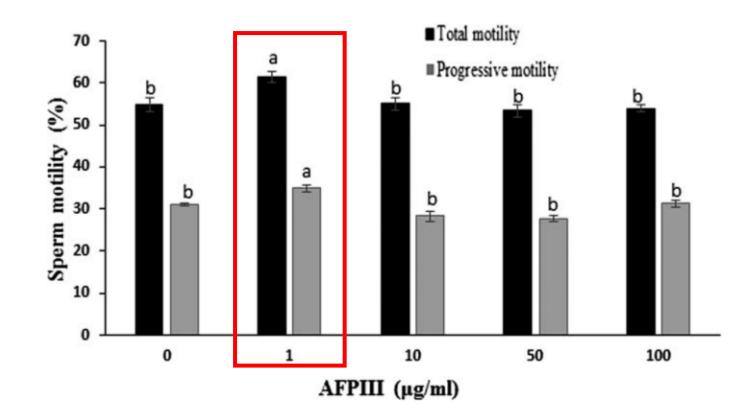
The association of resveratrol and AFP I did not improve the quality of frozen-thawed ram semen and induced some deleterious effects compared to the single addition of each one in the semen extender.

BIO-2020-0140-ver9-Lv_1P Type: research-article ORIGINAL ARTICLE

BIOPRESERVATION AND BIOBANKING Volume 00, Number 00, 2021 © Mary Ann Liebert, Inc. DOI: 10.1089/bio.2020.0140

The Effects of Antifreeze Protein III Supplementation on the Cryosurvival of Goat Spermatozoa During Cryopreservation

Chunrong Lv,^{1,2,*} Allai Larbi,^{1,*} Sameeullah Memon,¹ Jiachong Liang,^{1,2} Xiangwei Fu,³ Guoquan Wu,^{1,2} and Guobo Quan^{1,2}


 TABLE 1. EFFECTS OF ANTIFREEZE PROTEIN III SUPPLEMENTATION ON THE MOTILITY, MEMBRANE AND ACROSOME INTEGRITY OF GOAT SPERMATOZOA AFTER EQUILIBRATION AND BEFORE FREEZING

Concentrations	Total motility	Progressive motility	Progressive motility	Acrosome integrity
of AFP (µg/mL)	(%)	(%)	(%)	(%)
0	71.57 ± 5.43^{a}	52.43 ± 4.33^{a}	56.18 ± 5.11^{a}	$\begin{array}{c} 61.51 \pm 5.17^{a} \\ 59.74 \pm 1.96^{a} \\ 62.39 \pm 4.39^{a} \end{array}$
1	72.73 ± 3.59^{a}	54.72 ± 4.07^{a}	56.47 ± 5.26^{a}	
10	69.10 ± 3.23^{a}	52.91 ± 3.51^{a}	54.91 ± 3.30^{a}	
10	$\begin{array}{r} 69.10 \pm 5.25 \\ 70.74 \pm 6.29^{a} \\ 69.02 \pm 5.86^{a} \end{array}$	52.91 ± 5.51	54.91 ± 5.30	62.39 ± 4.39
50		51.03 ± 2.06^{a}	55.26 ± 4.89^{a}	61.46 ± 2.72^{a}
100		52.47 ± 5.49^{a}	57.33 ± 5.06^{a}	59.00 ± 3.01^{a}

Data are presented as mean \pm SEM. Same superscripts within a column indicate no significant difference (p > 0.05). AFP, antifreeze protein; SEM, standard error of the mean.

The Effects of Antifreeze Protein III Supplementation on the Cryosurvival of Goat Spermatozoa During Cryopreservation

Chunrong Lv,^{1,2,*} Allai Larbi,^{1,*} Sameeullah Memon,¹ Jiachong Liang,^{1,2} Xiangwei Fu,³ Guoquan Wu,^{1,2} and Guobo Quan^{1,2}

FIG. 2. Effects of AFPIII supplementation on the post-thaw motility of goat sperm. All data are expressed as mean \pm SEM. Different superscript letters represent a significant difference (p < 0.05). AFP, antifreeze protein; SEM, standard error of the mean.

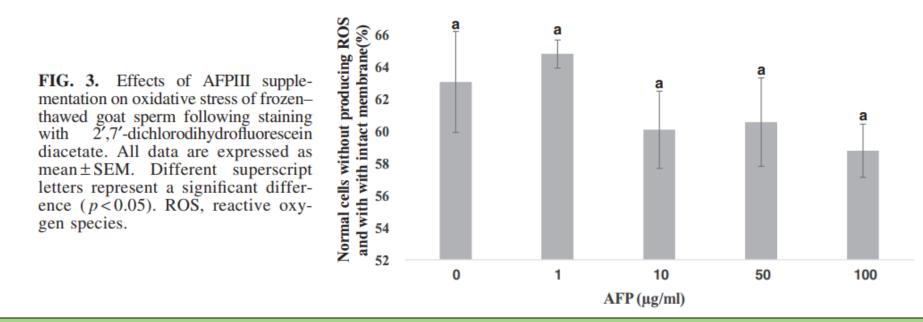
The Effects of Antifreeze Protein III Supplementation on the Cryosurvival of Goat Spermatozoa During Cryopreservation

Chunrong Lv,^{1,2,*} Allai Larbi,^{1,*} Sameeullah Memon,¹ Jiachong Liang,^{1,2} Xiangwei Fu,³ Guoquan Wu,^{1,2} and Guobo Quan^{1,2}

TABLE 2. EFFECTS OF ANTIFREEZE PROTEIN III SUPPLEMENTATION ON MEMBRANE INTEGRITY, ACROSOMAL INTEGRITY, AND MITOCHONDRIAL ACTIVITY OF FROZEN-THAWED GOAT SPERMATOZOA

Concentrations of AFP (µg/mL)	Sperm with curved tail (%)	Acrosome integrity (%)	Mitochondrial activity (%)
0	33.06 ± 1.17^{b}	43.09 ± 1.15^{b}	47.40 ± 1.25^{a}
1	39.55 ± 0.58^{a}	$48.43 \pm 1.22^{a}_{h}$	52.71 ± 1.55^{b}
10	$24.24 \pm 1.20^{\circ}$		$47.27 \pm 1.73^{\circ}$
50		40.08 ± 1.47^{b}	44.39 ± 1.14^{a}
100	$26.72 \pm 2.44^{\circ}$	40.83 ± 1.73^{b}	44.75 ± 2.15^{a}

Data are presented as mean \pm SEM. Different superscripts within a column indicate a difference (p < 0.05).


TABLE 3. EFFECTS OF ANTIFREEZE PROTEIN III SUPPLEMENTATION ON PHOSPHATIDYLSERINE DISTRIBUTION OF FROZEN-THAWED GOAT SPERMATOZOA

Concentrations of AFP (µg/mL)	Apoptosis- like (%)	Viable (%)	Dead (%)
0	15.76 ± 0.69^{a}	29.67 ± 0.76^{b}	54.93 ± 0.64^{b}
1	15.09 ± 1.01^{a}	35.11 ± 0.71^{a}	$50.31 \pm 0.87^{\circ}$ $54.21 \pm 1.09^{\circ}$
10	16.98 ± 0.56^{a}	$29.26 \pm 0.72^{\circ}$	$54.21 \pm 1.09^{\circ}$
50		27.60 ± 1.12^{b}	
100	14.33 ± 0.95^{a}	27.29 ± 0.96^{b}	59.34 ± 1.00^{a}

Data are presented as mean \pm SEM. Different superscripts within a column indicate a difference (p < 0.05).

The Effects of Antifreeze Protein III Supplementation on the Cryosurvival of Goat Spermatozoa During Cryopreservation

Chunrong Lv,^{1,2,*} Allai Larbi,^{1,*} Sameeullah Memon,¹ Jiachong Liang,^{1,2} Xiangwei Fu,³ Guoquan Wu,^{1,2} and Guobo Quan^{1,2}

The presence of AFPIII at 1 µg/mL in freezing extenders can enhance the postthaw motility, membrane integrity, acrosome integrity, and viability of goat spermatozoa. However, it should be noted that the positive effects of AFPIII may be dependent on the specific cryopreservation approach used in this study, such as the extender used and the freezing process.

Contents lists available at ScienceDirect

Research in Veterinary Science

journal homepage: www.elsevier.com/locate/rvsc

Effect of antifreeze protein type III on frozen/thawed of spermatozoa recover from goat epididymis

Millena Maria Monteiro^{a,*}, Desirée Coelho de Mello Seal^a, Jerônimo Hugo de Souza^a, Mariana Trevisan^a, Lúcia Cristina Pereira Arruda^a, Sildivane Valcácia Silva^b, Maria Madalena Pessoa Guerra^a

^a Laboratory of Andrology, Department of Veterinary Medicine, University Federal Rural of Pernambuco (UFRPE), Recife, Pernambuco, Brazil ^b Department of Biotechnology, Biotechnology Center, University Federal of Paraíba (UFPB), João Pessoa, Paraíba, Brazil

Effect of antifreeze protein type III on frozen/thawed of spermatozoa recover from goat epididymis

Millena Maria Monteiro^{a,*}, Desirée Coelho de Mello Seal^a, Jerônimo Hugo de Souza^a, Mariana Trevisan^a, Lúcia Cristina Pereira Arruda^a, Sildivane Valcácia Silva^b,

Maria Madalena Pessoa Guerra^a

Table 1

Kinematics (CASA) of cryopreserved epididymal sperm of goats in extender supplemented with different concentrations of AFP III. Data are expressed as mean \pm standard deviation.

Variables	AFP III (µg/mL)					
	0	1	10	100		
MT (%)	$\textbf{67.41} \pm \textbf{4.71}$	64.61 ± 9.01	66.63 ± 10.83	63.91 ± 8.54		
MP (%)	25.51 ± 7.06	23.36 ± 4.14	23.66 ± 12.56	21.95 ± 7.62		
LIN (%)	52.35 ± 5.34	52.91 ± 4.36	53.60 ± 7.04	$\textbf{50.84} \pm \textbf{4.44}$		
STR (%)	$\textbf{77.06} \pm \textbf{2.97}$	77.53 ± 3.55	$\textbf{78.19} \pm \textbf{4.21}$	$\textbf{77.18} \pm \textbf{2.67}$		
WOB (%)	$\textbf{67.78} \pm \textbf{4.44}$	68.19 ± 3.10	$\textbf{68.34} \pm \textbf{5.47}$	$\textbf{65.79} \pm \textbf{3.87}$		
VCL (µm/s)	$\textbf{71.41} \pm \textbf{12.79}$	$\textbf{68.75} \pm \textbf{16.43}$	$\textbf{73.80} \pm \textbf{10.38}$	69.23 ± 6.63		
VSL (µm/s)	$\textbf{42.60} \pm \textbf{7.27}$	$\textbf{40.44} \pm \textbf{5.25}$	$\textbf{41.08} \pm \textbf{8.02}$	$\textbf{38.59} \pm \textbf{6.61}$		
VAP (µm/s)	$\textbf{55.09} \pm \textbf{7.98}$	$\textbf{52.28} \pm \textbf{6.87}$	$\textbf{52.31} \pm \textbf{8.20}$	$\textbf{49.96} \pm \textbf{8.24}$		
ALH (µm/s)	$\textbf{2.86} \pm \textbf{0.39}$	$\textbf{2.71} \pm \textbf{0.43}$	$\textbf{2.78} \pm \textbf{0.42}$	$\textbf{2.78} \pm \textbf{0.45}$		
BCF (Hz)	$\textbf{11.44} \pm \textbf{0.89}$	11.38 ± 0.63	11.70 ± 0.82	11.79 ± 0.82		

AFP III - antifreeze protein type III; MT - total motility; MP - progressive motility; LIN- linearity; STR- straightness; WOB: wobble; VCL - curvilinear velocity, VSL - straightline velocity; VAP - average path velocity; ALH- amplitude of lateral head displacement; BCF- beat cross frequency. ^{A, B, C, D}: different letters on the same line represent statistical difference between treatments (p < 0.05).

Effect of antifreeze protein type III on frozen/thawed of spermatozoa recover from goat epididymis

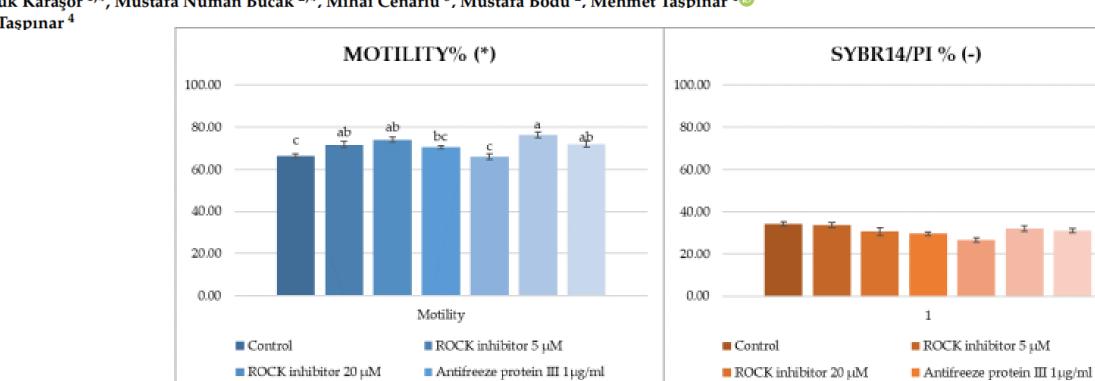
Millena Maria Monteiro^{a,*}, Desirée Coelho de Mello Seal^a, Jerônimo Hugo de Souza^a, Mariana Trevisan^a, Lúcia Cristina Pereira Arruda^a, Sildivane Valcácia Silva^b, Maria Madalena Pessoa Guerra^a

Table 2

Plasma and acrosome membrane integrity, mitochondrial membrane potential, intracellular ROS (flow cytometry) levels of cryopreserved epididymal spermatozoa of goats, in extender supplemented with different concentrations of AFP III. Data are expressed as meean \pm standard deviation.

Variables	AFP III (µg/mL)								
	0	1	10	100					
iMPA (%)	$\textbf{36.17} \pm \textbf{7.57}^{a}$	$\textbf{30.69} \pm \textbf{4.49}^{ab}$	$\textbf{29.02} \pm \textbf{6.69}^{ab}$	26.51 ± 6.17^{b}					
MMP (%)	14.61 ± 8.84	18.81 ± 12.05	18.88 ± 11.44	22.16 ± 13.16					
iROS (%)	79.02 ± 35.51	88.67 ± 23.13	$\textbf{86.54} \pm \textbf{32.00}$	85.35 ± 31.69					

AFP III: antifreeze protein type III; iPMA: percentage of cells with intact plasma and acrosome membrane; MMP: mitochondrial membrane potential; iROS: intracellular ROS levels. Average \pm standard deviation; ^{a, b, c, d:} different letters on the same line represent statistical difference between treatments (p < 0.05). In conclusion, the addition of AFP III to Tris-egg yolk extender, used for the freezing of sperm obtained from the epididymis of goats, did not improve the preservation of these cells.



Antifreeze protein III 4 µg/ml = Boron 0.25 mM

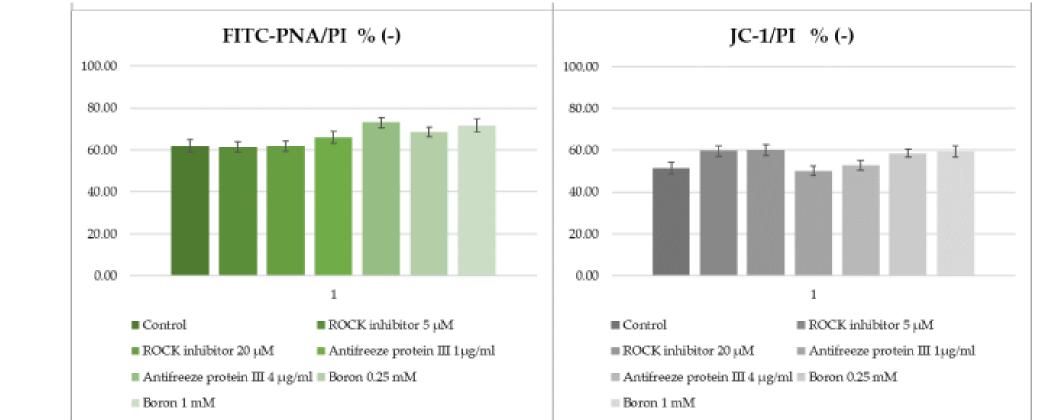
Boron 1 mM

Article

The Effects of Different Doses of ROCK Inhibitor, Antifreeze Protein III, and Boron Added to Semen Extender on Semen **Freezeability of Ankara Bucks**

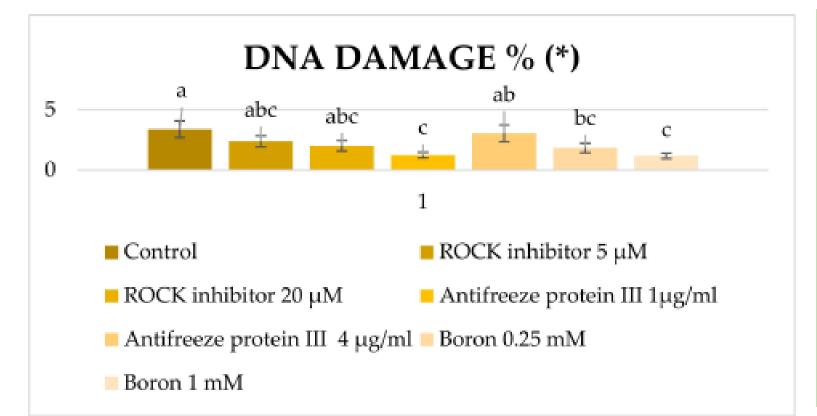
Ömer Faruk Karaşör ¹,*, Mustafa Numan Bucak ²,*, Mihai Cenariu ³, Mustafa Bodu ², Mehmet Taspınar ⁴D and Filiz Taspinar⁴

Antifreeze protein III 4 µg/ml = Boron 0.25 mM


Boron 1 mM

Article

The Effects of Different Doses of ROCK Inhibitor, Antifreeze Protein III, and Boron Added to Semen Extender on Semen Freezeability of Ankara Bucks


Ömer Faruk Karaşör ¹,*, Mustafa Numan Bucak ²,*, Mihai Cenariu ³, Mustafa Bodu ², Mehmet Taşpınar ⁴

and Filiz Taşpınar⁴

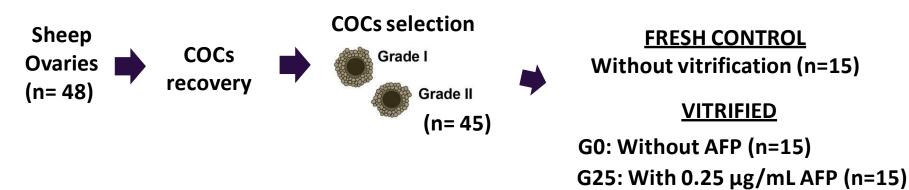
Article

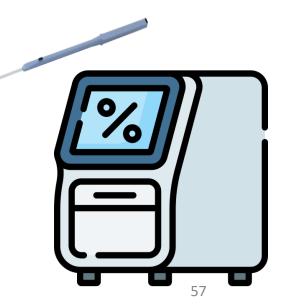
The Effects of Different Doses of ROCK Inhibitor, Antifreeze Protein III, and Boron Added to Semen Extender on Semen Freezeability of Ankara Bucks

Ömer Faruk Karaşör ^{1,*}, Mustafa Numan Bucak ^{2,*}, Mihai Cenariu ³, Mustafa Bodu ², Mehmet Taşpınar ⁴ and Filiz Taşpınar ⁴

It was determined that some of the additives added to the Tris-based extender (ROCK inhibitor 5 and 10 μ M; boron 0.25 and 1 mM) provided a significant improvement in sperm motility while others, antifreeze protein III 1 µg/mL and boron (0.25 and 1 mM), decreased the damage to DNA

AFPs in small ruminants oocyte cryopreservation

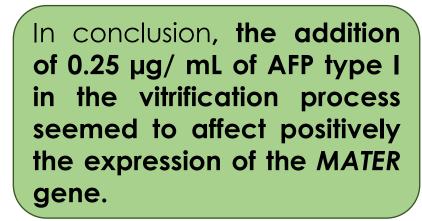


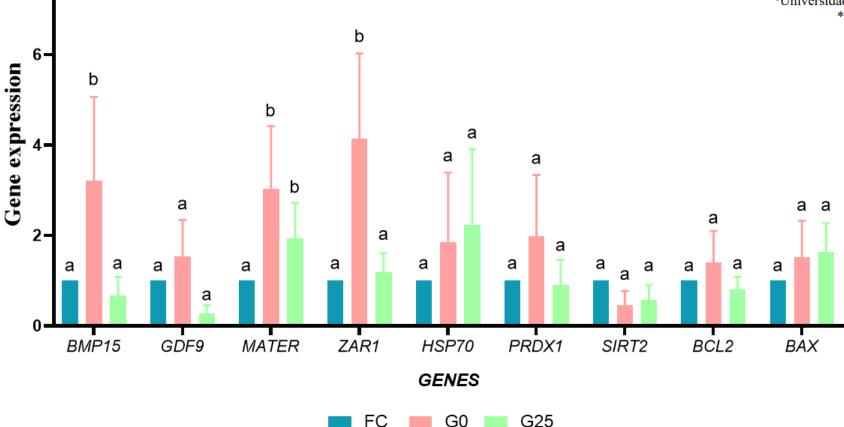

Antifreeze protein type I affected positively the MATER gene expression in vitrified cumulus-oocyte complexes of ewes

A proteína anticongelante tipo I afetou positivamente a expressão do gene MATER em complexos cumulus-oócitos vitrificados de ovelhas

Thais de Almeida Oliveira¹, Mariana Pedrosa de Paula Guimarães¹, Débora Fernanda Santos de Pinho¹, Leonardo Novaes Cajaiba¹, Ana Lucia Rosa e Silva Maia¹, Gabriela Ramos Leal¹, Felipe Zandonadi Brandão, Ribrio Ivan Tavares Pereira Batista¹, Joanna Maria Gonçalves Souza-Fabjan¹

> ¹Universidade Federal Fluminense, Niterói, RJ, Brasil *E-mail: joannavet@gmail.com


Anais do XXV Congresso Brasileiro de Reprodução Animal (CBRA-2023), Belo Horizonte, MG, 24 a 26 de maio de 2023.

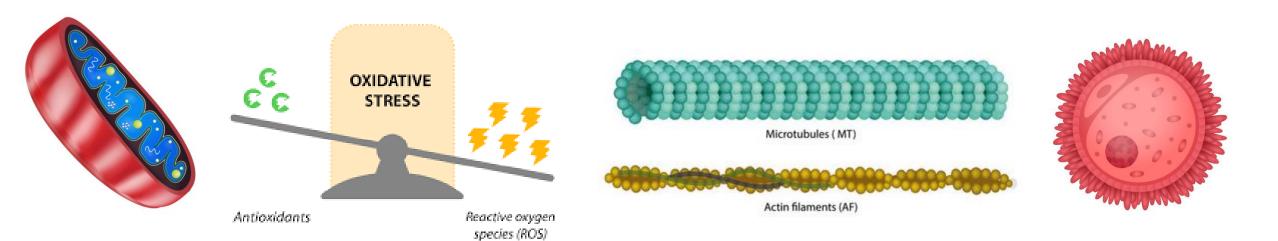

Antifreeze protein type I affected positively the MATER gene expression in vitrified cumulus-oocyte complexes of ewes

A proteína anticongelante tipo I afetou positivamente a expressão do gene MATER em complexos cumulus-oócitos vitrificados de ovelhas

Thais de Almeida Oliveira¹, Mariana Pedrosa de Paula Guimarães¹, Débora Fernanda Santos de Pinho¹, Leonardo Novaes Cajaiba¹, Ana Lucia Rosa e Silva Maia¹, Gabriela Ramos Leal¹, Felipe Zandonadi Brandão, Ribrio Ivan Tavares Pereira Batista¹, Joanna Maria Gonçalves Souza-Fabjan¹

> ¹Universidade Federal Fluminense, Niterói, RJ, Brasil *E-mail: joannavet@gmail.com

8-


Under analysis

FRESH CONTROL Without vitrification

VITRIFIED

G0: Without AFP I G25: With 0.25 μg/mL AFP I

-

AFPs in small ruminants embryo cryopreservation

Hypothermic storage of sheep embryos with antifreeze proteins: development in vitro and in vivo

A Baguisi ¹, A Arav, T F Crosby, J F Roche, M P Boland

Table 1. Viability rates in vitro (72 hours) of ovine embryos following storage at 4°C for 4 days in PBS supplemented with bovine serum albumen (BSA) at 4 mg/ml or in Winter Flounder (Type 1) or Ocean Pout (Type 3) antifreeze proteins at 1 and 10 mg/ml

Treatment group	Viability rate (%)	Hatching rate (%)	Diameter (µm)
Tl-Control	18/21 (86) ^a	15/21(7 1) ^a	453 <u>+</u> 70 ^a
T2-BSA	9/15 (60) ^{ab}	7/15(47) ^a	260±10 ^d
T3-OP1	15/21 (7 1) ^{ab}	12/21 (57) ^a	376±74 ^{bc}
T4-OP10	11/20 (55) ^b	9/20 (45) ^á	337±33°
T5-WF1	14/15 (93) ^a	11/15(73) ^a	415±125 ^{ab}
T6-WF10	13/15 (87) ^a	9/15 (60) ^a	353±137°

a,b,c Values within columns without common superscripts are different (P<0.05).

Hypothermic storage of sheep embryos with antifreeze proteins: development in vitro and in vivo

A Baguisi ¹, A Arav, T F Crosby, J F Roche, M P Boland

Table 2. Viability and hatching rates of ovine embryos following hypothermic storage for 4 days at 0°C or 4°C in PBS containing either bovine serum albumen (BSA) at 4 mg/ml or Winter Flounder (WF) at 1 mg/n-d and subsequent culture in vitro for 72 hours

Treatment group	Viability rate	Hatching rate	Diameter (µm)
T1-controls	10/10 (100) ^a	10/10 (100) ^d	$\begin{array}{r} 432\pm 46^{a} \\ 263\pm 12^{c} \\ 275\pm 20^{c} \\ 345\pm 62^{b} \\ 383\pm 35^{ab} \end{array}$
T2-BSA 0°C	6/10 (60) ^{ab}	3/10 (30) ^e	
T3-BSA 4°C	8/11 (73) ^{ab}	6/11 (54) ^e	
T4-WF 0°C	6/11 (54) ^b	5/11 (45) ^e	
T5-WF 4°C	9/12 (75) ^{ab}	8/12 (67) ^{de}	

a-e Values within columns with no common superscript are significantly different: a-c P<0.025; d,e P<0.01.

Hypothermic storage of sheep embryos with antifreeze proteins: development in vitro and in vivo

A Baguisi ¹, A Arav, T F Crosby, J F Roche, M P Boland

Table 3. Pregnancy rates (Days 28 to 32) following surgical transfer of ovine embryos either fresh or following storage at 4°C for 4 d prior to transfer

Treatment group	Pregnancy rate (%)	No. viable fetuses (%)	No.(%) viable fetuses from pregnant ewes
Fresh (control)	6/8 (75)	11/21 (52)	11/16 (68)
BSA > 2 ^o C/m	10/11 (91)	14/27 (52)	14/25 (56)
WF > 2°C/m	6/10 (60)	10/23 (44)	10/14 (71)
WF < 1 ^o C/m	8/10 (80)	15/27 (56)	15/21 (71)

No difference

Hypothermic storage of sheep embryos with antifreeze proteins: development in vitro and in vivo

A Baguisi ¹, A Arav, T F Crosby, J F Roche, M P Boland

In conclusion these data indicate that AFPs and BSA can protect ovine embryos during storage at O° or 4°C in vitro for 4 d and result in high survival after in vitro culture or in vivo transfer. If the mechanism of protection against hypothermia-related perturbations could be extended for longer periods (beyond 2 d) and across a wider range of biological cell types (gametes, tissues and organs), then it would have enormous theoretical and practical implications. A specific role for AFPs has not been fully established, and it will require further elucidation to optimize their properties. Contents lists available at ScienceDirect

Cryobiology

Antifreeze protein from *Anatolia polita* (ApAFP914) improved outcome of vitrified *in vitro* sheep embryos

Xiaolin Li^{a,b,1}, Liqin Wang^{b,1}, Chen Yin^{a,b,1}, Jiapeng Lin^b, Yangsheng Wu^b, Dayong Chen^c, Chunjuan Qiu^c, Bin Jia^{a,*}, Juncheng Huang^{b,**}, XiangJu Jiang^d, Lan Yang^b, Li Liu^b

^a College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China

^b Key Laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Ministry of Agriculture and Rural affairs, Urumqi, 830000, PR China

^c Inner Mongolia Sino Sheep Technology Co. Ulanchap, 011800, China

^d HouBo College of Xinjiang Medical University, Karamay, 834000, China

Table 7

Effect of ApAFP914 on the rapid development of in vitro embryos in sheep.

Concentration (µg/mL)	No.thawed embryos	No. surviving embryos	No. hatching embryos	Survival rate (%)	Hatching rate (%)
Control	126	122	72	95.14 ± 2.55	$\textbf{56.74} \pm \textbf{5.51}$
5	68	64	41	$\textbf{96.23} \pm \textbf{2.46}$	66.16 ± 6.13
10	239	227	138	95.09 ± 1.74	62.92 ± 5.79
15	103	97	53	$\textbf{94.12} \pm \textbf{1.87}$	55.56 ± 3.93
30	134	125	74	93.50 ± 2.13	$\textbf{51.86} \pm \textbf{5.81}$

Contents lists available at ScienceDirect

Cryobiology

Antifreeze protein from *Anatolia polita* (ApAFP914) improved outcome of vitrified *in vitro* sheep embryos

Xiaolin Li^{a,b,1}, Liqin Wang^{b,1}, Chen Yin^{a,b,1}, Jiapeng Lin^b, Yangsheng Wu^b, Dayong Chen^c, Chunjuan Qiu^c, Bin Jia^{a,*}, Juncheng Huang^{b,**}, XiangJu Jiang^d, Lan Yang^b, Li Liu^b

Table 8

Effect of ApAFP914 concentration on slower in vitro embryo freezing efficiency in sheep (repeated 3 times).

Concentration (µg/mL)	No. thawed embryos	No. surviving embryos	No. hatching embryos	Survival rate (%)	Hatching rate (%)
Control	60	48	11	77.37 ± 3.32	$22.95 \pm 5.95a$
5	64	51	12	78.66 ± 1.92	$23.22 \pm 0.81a$
10	72	60	24	84.95 ± 5.55	$\textbf{35.63} \pm \textbf{7.59b}$
15	59	48	5	82.43 ± 2.12	$9.11 \pm 3.23a$
30	63	54	5	85.62 ± 2.89	$\textbf{7.95} \pm \textbf{1.62a}$

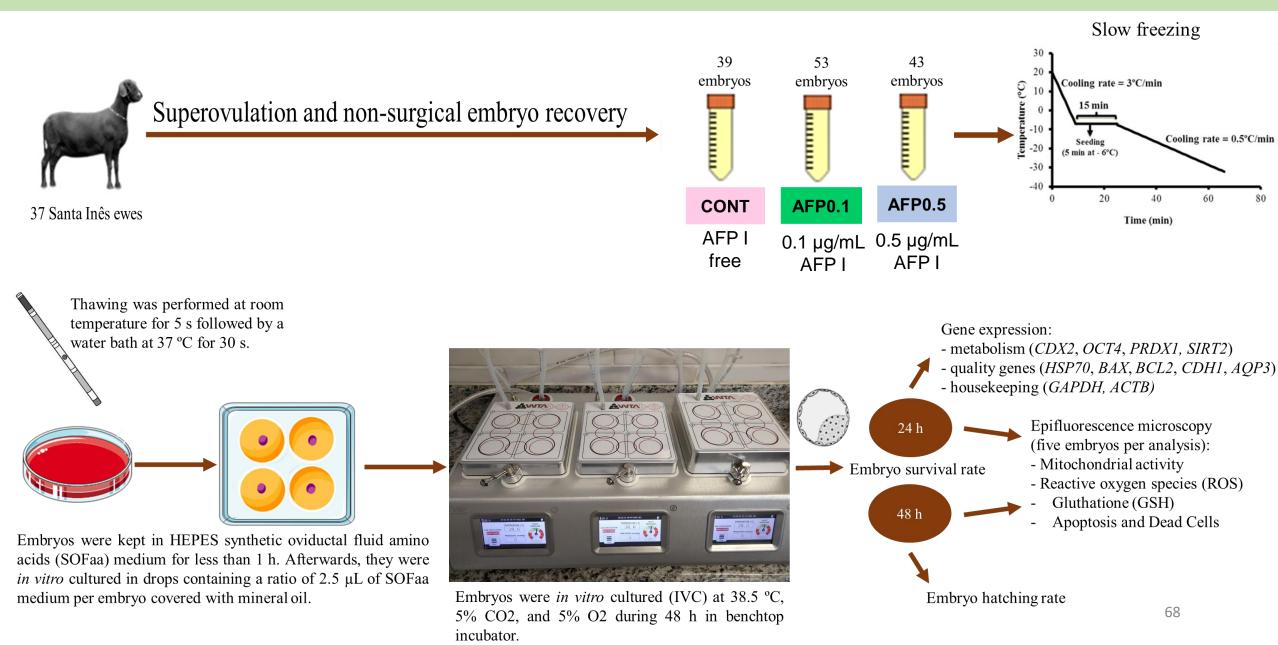
As a cryoprotectant, ApAFP914 can increase the hatching rate, indicating that AFP can be used for sheep embryo cryopreservation. However, high concentrations of AFP tend to reduce developmental efficiency.

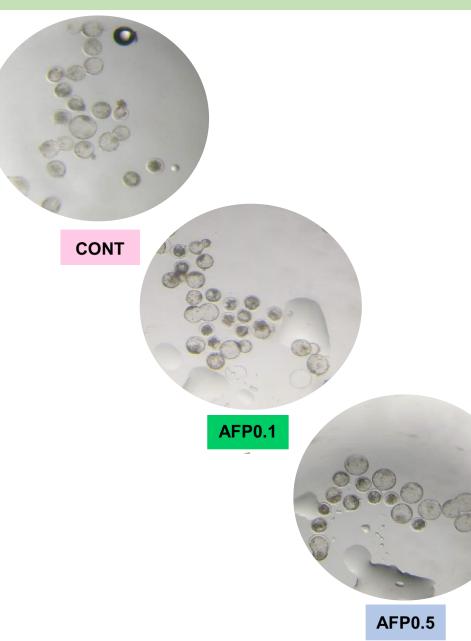
Research in Veterinary Science 168 (2024) 105132

Contents lists available at ScienceDirect

Research in Veterinary Science

journal homepage: www.elsevier.com/locate/rvsc




Effect of antifreeze protein I in the freezing solution on *in vivo*-derived sheep embryos

Lucas F.L. Correia^{*}, Gabriela R. Leal, Felipe Z. Brandão, Ribrio I.T.P. Batista, Joanna M. G. Souza-Fabjan^{*}

Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brazil Filho, 64, CEP 24230-340 Niterói, RJ, Brazil

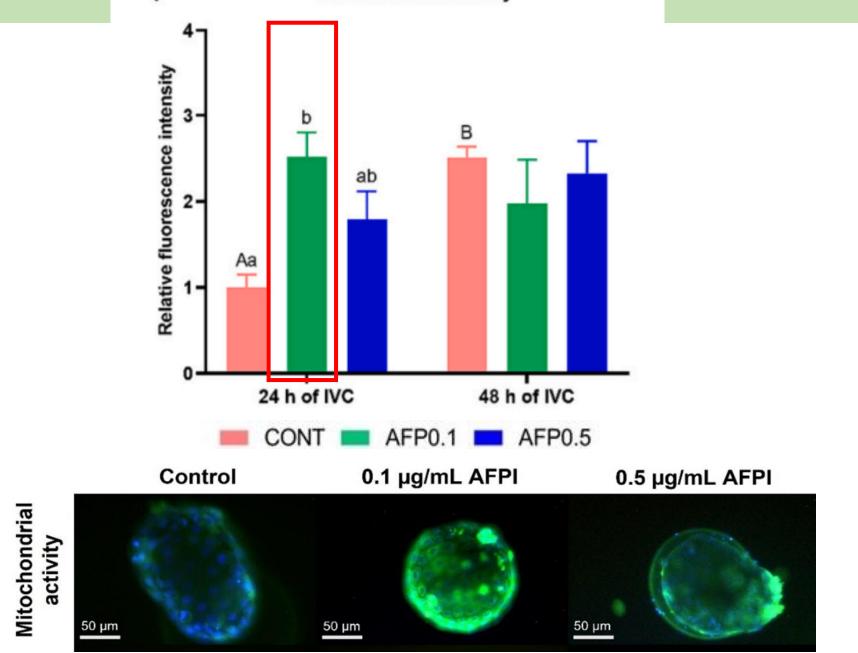
Experimental design

Table 2

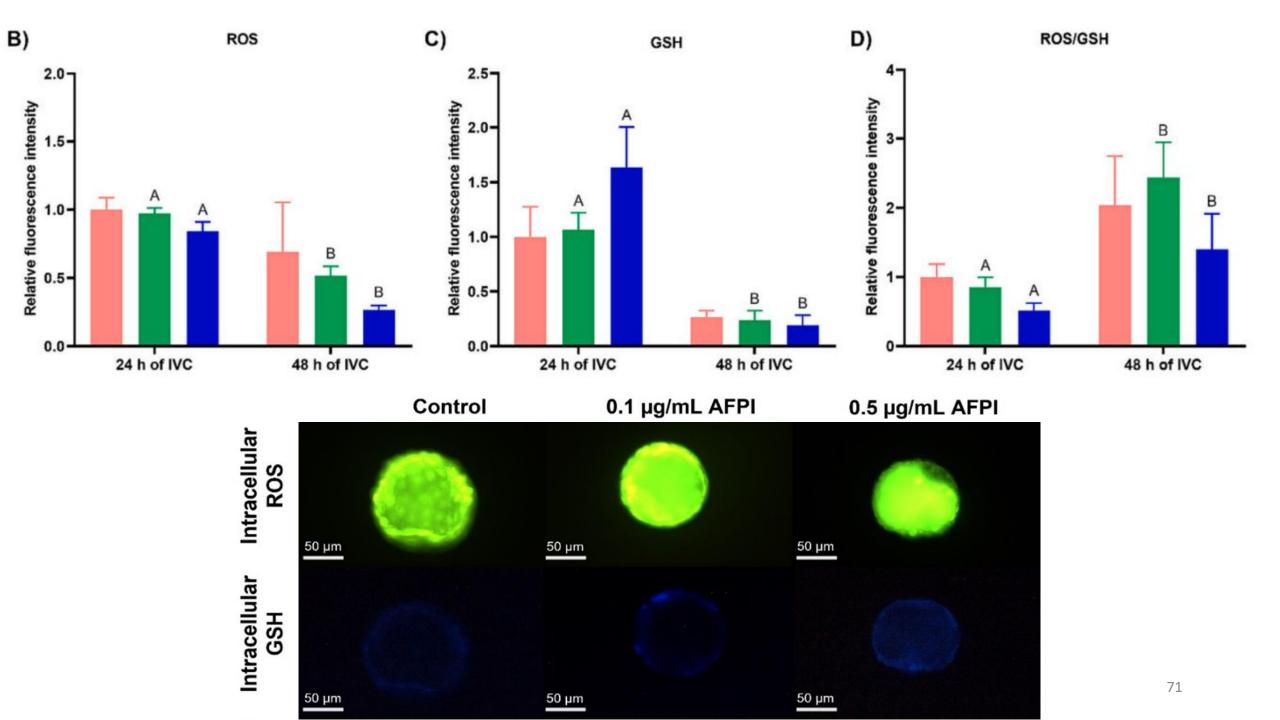
Survival, morulas development, and hatching rates of *in vivo*-derived sheep embryos previously submitted to slow freezing with different concentrations of antifreeze protein type I (AFP I) and *in vitro* cultured for 48 h after thawing.

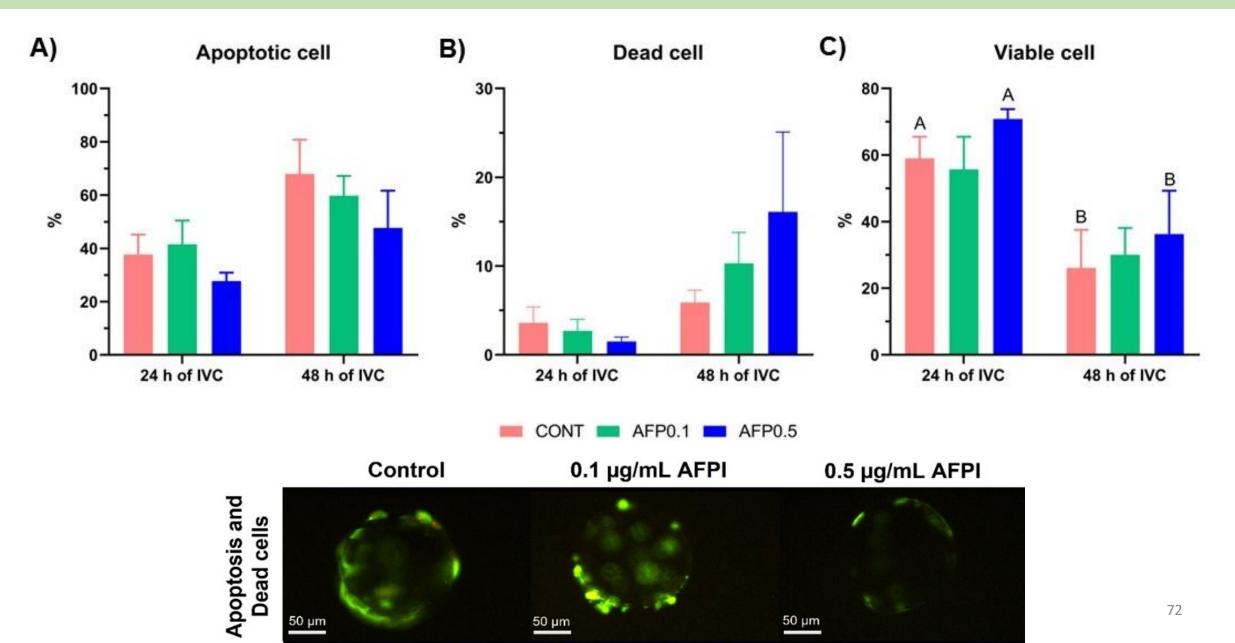
Group	Embryo survival rate at 24 h after thawing (%)	Total embryo survival rate (%)	Total of morulas development (%)	Total hatching rate/Total of viable blastocysts ¹ (%)
CONT [#]	19/39 (49)	22/39 (56)	3/19 (16)	11/22 (50)
AFP0.1 [†]	28/53 (53)	32/53 (60)	3/19 (16)	21/34 (62)
AFP0.5 [‡]	19/43 (44)	23/43 (53)	3/16 (19)	9/27 (33)*
TOTAL	66/135 (49)	77/135 (57)	9/54 (17)	41/83 (49)

[#] CONT = Control group, which contained - 3 morulas, 16 compact morulas, 4 early blastocysts, 4 blastocysts, 11 expanded blastocysts, 1 hatched blastocyst. [†] AFP0.1 = 0.1 μ g/mL of AFP I group, which contained – 4 morulas, 15 compact morulas, 7 early blastocysts, 8 blastocysts, 16 expanded blastocysts, 3 hatched blastocysts.


 ‡ AFP0.5 = 0.5 µg/mL of AFP I group, which contained – 3 morulas, 13 compact morulas, 9 early blastocysts, 6 blastocysts, 11 expanded blastocysts, 1 hatched blastocyst.

¹ Only viable blastocysts were considered to calculate the hatching rate (morulas and compact morulas that blocked their development, and blastocysts already hatched before cryopreservation were not considered for the hatching rate).


^{*} Tendency for a lower hatching rate in AFP0.5 compared to AFP0.1 (p = 0.09).


A)

Mitochondrial activity

70

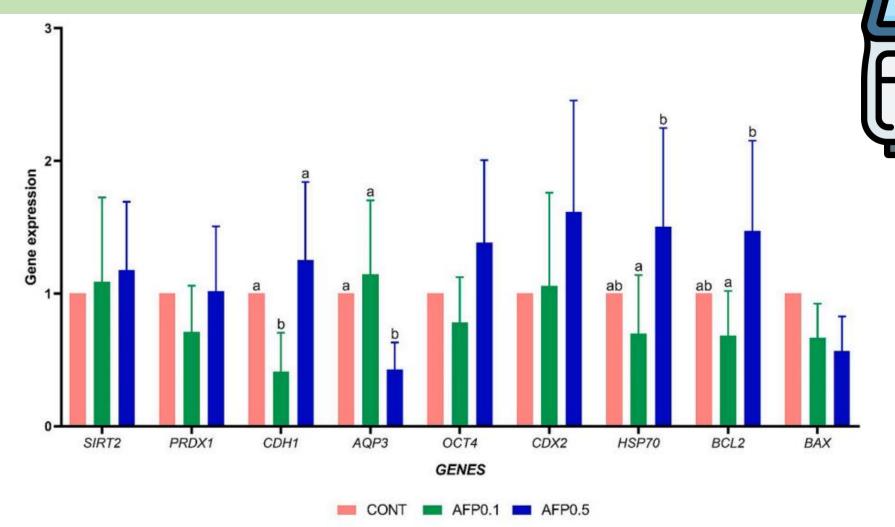
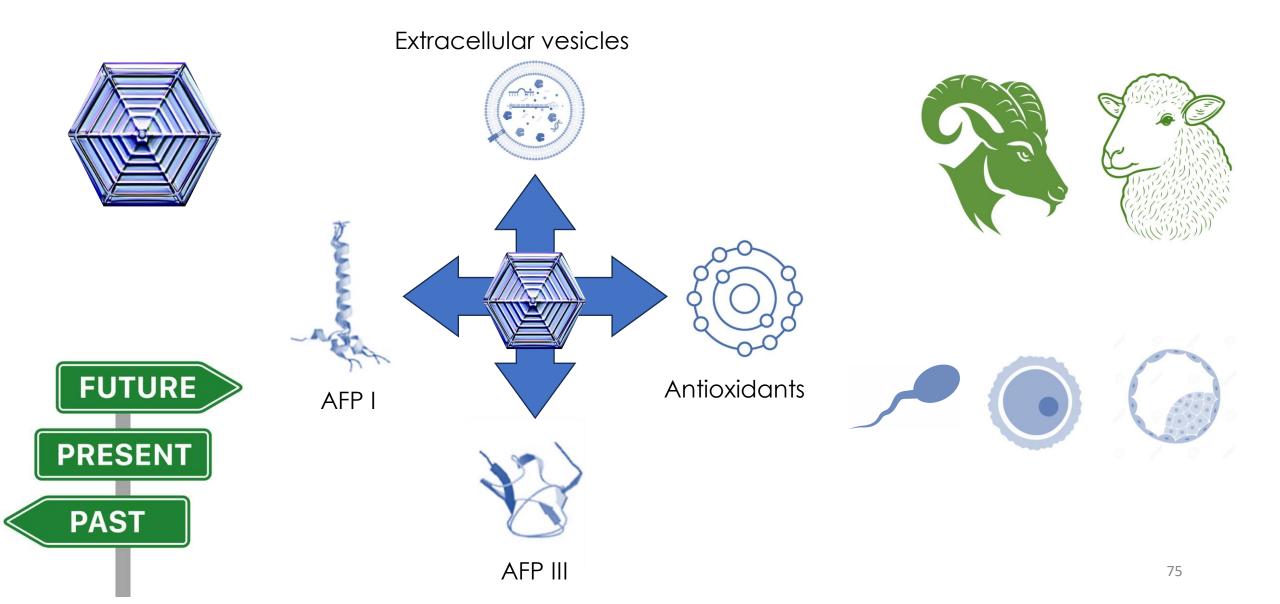


Fig. 4. Gene expression (Mean \pm SEM) of sirtuin 2 (*SIRT2*), peroxiredoxin 1 (*PRDX1*), cadherin-1 (*CDH1*), aquaporin 3 (*AQP3*), octamer-binding transcription factor 4 (*OCT4*), caudal type homeobox 2 (*CDX2*), 70 kilodalton heat shock protein (*HSP70*), BCL2 associated X (*BAX*), and B-cell lymphoma protein 2 (*BCL2*) on *in vivo*-derived sheep embryos submitted to slow freezing with different concentrations of antifreeze protein type I (AFP I) and *in vitro* cultured for 24 h after thawing. Different letters show statistical differences (p < 0.05).

Contents lists available at ScienceDirect

Research in Veterinary Science


Effect of antifreeze protein I in the freezing solution on *in vivo*-derived sheep embryos

Lucas F.L. Correia^{*}, Gabriela R. Leal, Felipe Z. Brandão, Ribrio I.T.P. Batista, Joanna M. G. Souza-Fabjan^{*}

Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brazil Filho, 64, CEP 24230-340 Niterói, RJ, Brazil

The addition of AFP I does not affect the survival and viability of *in vivo*-derived sheep embryos cryopreserved. The **supplementation** of 0.1 μ g/mL of AFP I in slow freezing solution enhances mitochondrial activity within 24 h of IVC, maintaining oxidative stress homeostasis and gene modulation, being a potential supplementation to be applied in slow freezing medium of sheep embryos.

New strategies

Conclusion

- Potential cryoprotective agent
- Different types of antifreeze proteins
- Best results at low concentrations
- Effects on the cryosurvival of gametes and embryos
- There are still gaps to be answered...

FACULDADE DE VETERINÁRIA FAZENDA ESCOLA

Acknowledgment

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

The 3rd CZU hybrid seminar - 2024 Biotechnology in small ruminant reproduction: an international experience

Antifreeze proteins: potential cryoprotectant of gametes and embryos from small ruminants

Thank you for your attention!

lucascorreia@id.uff.br

